File size: 1,900 Bytes
9b77a14
13cd024
 
 
 
 
 
 
 
 
 
 
9b77a14
13cd024
 
 
 
 
 
 
 
357be53
 
13cd024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
tags:
- merge
- mergekit
- lazymergekit
- mistralai/Mistral-7B-v0.1
- Kukedlc/neuronal-7b-Mlab
- mlabonne/Monarch-7B
base_model:
- mistralai/Mistral-7B-v0.1
- Kukedlc/neuronal-7b-Mlab
- mlabonne/Monarch-7B
---

# Triunvirato-7b

Trinity-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
* [Kukedlc/neuronal-7b-Mlab](https://huggingface.co/Kukedlc/neuronal-7b-Mlab)
* [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B)


# Credit goes to [kukedlc](https://huggingface.co/Kukedlc/Triunvirato-7b)
## 🧩 Configuration

```yaml
models:
  - model: mistralai/Mistral-7B-v0.1
    parameters:
      density: [1, 0.7, 0.1] # density gradient
      weight: 1.0
  - model: Kukedlc/neuronal-7b-Mlab
    parameters:
      density: 0.5
      weight: [0, 0.3, 0.7, 1] # weight gradient
  - model: mlabonne/Monarch-7B
    parameters:
      density: 0.33
      weight:
        - filter: mlp
          value: 0.5
        - value: 0
merge_method: ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  normalize: true
  int8_mask: true
dtype: float16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/Triunvirato-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```