KristofGaming39
commited on
Create codefortraining.py
Browse files- codefortraining.py +70 -0
codefortraining.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
from torchvision.models import resnet50
|
4 |
+
from torchvision.transforms import transforms
|
5 |
+
from torch.utils.data import DataLoader, Dataset
|
6 |
+
|
7 |
+
# Define the dataset class
|
8 |
+
class RobloxDataset(Dataset):
|
9 |
+
def __init__(self, root_dir, transform=None):
|
10 |
+
self.root_dir = root_dir
|
11 |
+
self.transform = transform
|
12 |
+
|
13 |
+
def __len__(self):
|
14 |
+
return 200 # Number of images in the dataset, replace with your own to train with your own images.
|
15 |
+
|
16 |
+
def __getitem__(self, idx):
|
17 |
+
img_path = f'{self.root_dir}/human_{str(idx+1).zfill(2)}.png'
|
18 |
+
image = Image.open(img_path).convert('RGB')
|
19 |
+
|
20 |
+
if self.transform:
|
21 |
+
image = self.transform(image)
|
22 |
+
|
23 |
+
return image
|
24 |
+
|
25 |
+
data_transform = transforms.Compose([
|
26 |
+
transforms.Resize((224, 224)),
|
27 |
+
transforms.ToTensor(),
|
28 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
29 |
+
])
|
30 |
+
|
31 |
+
dataset = RobloxDataset('/content/dataset', transform=data_transform)
|
32 |
+
|
33 |
+
data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
|
34 |
+
|
35 |
+
model = resnet50(pretrained=True)
|
36 |
+
model.fc = torch.nn.Linear(in_features=2048, out_features=1) # Adjust the number of output classes if needed
|
37 |
+
|
38 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
+
model.to(device)
|
40 |
+
|
41 |
+
criterion = torch.nn.BCEWithLogitsLoss()
|
42 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
43 |
+
|
44 |
+
# Train the model
|
45 |
+
num_epochs = 100 # Adjust the number of training epochs (more epochs = more training time but with more accuracy and less loss).
|
46 |
+
""" Training the model with more epochs
|
47 |
+
Pros:
|
48 |
+
- more accuracy
|
49 |
+
- less loss (it means the model is improving)
|
50 |
+
|
51 |
+
Con:
|
52 |
+
- more training time
|
53 |
+
"""
|
54 |
+
|
55 |
+
for epoch in range(num_epochs):
|
56 |
+
for images in data_loader:
|
57 |
+
images = images.to(device)
|
58 |
+
labels = torch.ones((images.size(0), 1)).to(device) # Assuming all images belong to the same class
|
59 |
+
|
60 |
+
outputs = model(images)
|
61 |
+
loss = criterion(outputs, labels)
|
62 |
+
|
63 |
+
optimizer.zero_grad()
|
64 |
+
loss.backward()
|
65 |
+
optimizer.step()
|
66 |
+
|
67 |
+
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')
|
68 |
+
|
69 |
+
# Save the trained model
|
70 |
+
torch.save(model.state_dict(), '/content/zero_shot_classification_model.pth')
|