Kukedlc commited on
Commit
7b5f883
·
verified ·
1 Parent(s): 787be5e

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - merge
4
+ - mergekit
5
+ - lazymergekit
6
+ - NeuralKybalion-7B-slerp
7
+ - NeuralKybalion-7B-slerp-v2
8
+ - rwitz/experiment26-truthy-iter-0
9
+ base_model:
10
+ - NeuralKybalion-7B-slerp
11
+ - NeuralKybalion-7B-slerp-v2
12
+ - rwitz/experiment26-truthy-iter-0
13
+ ---
14
+
15
+ # NeuralKybalion-7B-slerp-v3
16
+
17
+ NeuralKybalion-7B-slerp-v3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
18
+ * [NeuralKybalion-7B-slerp](https://huggingface.co/NeuralKybalion-7B-slerp)
19
+ * [NeuralKybalion-7B-slerp-v2](https://huggingface.co/NeuralKybalion-7B-slerp-v2)
20
+ * [rwitz/experiment26-truthy-iter-0](https://huggingface.co/rwitz/experiment26-truthy-iter-0)
21
+
22
+ ## 🧩 Configuration
23
+
24
+ ```yaml
25
+ models:
26
+ - model: NeuralKybalion-7B-slerp
27
+ # no parameters necessary for base model
28
+ - model: NeuralKybalion-7B-slerp
29
+ parameters:
30
+ density: 0.6
31
+ weight: 0.4
32
+ - model: NeuralKybalion-7B-slerp-v2
33
+ parameters:
34
+ density: 0.6
35
+ weight: 0.4
36
+ - model: rwitz/experiment26-truthy-iter-0
37
+ parameters:
38
+ density: 0.4
39
+ weight: 0.2
40
+ merge_method: dare_ties
41
+ base_model: NeuralKybalion-7B-slerp
42
+ parameters:
43
+ int8_mask: true
44
+ dtype: bfloat16
45
+ random_seed: 0
46
+
47
+ ```
48
+
49
+ ## 💻 Usage
50
+
51
+ ```python
52
+ !pip install -qU transformers accelerate
53
+
54
+ from transformers import AutoTokenizer
55
+ import transformers
56
+ import torch
57
+
58
+ model = "Kukedlc/NeuralKybalion-7B-slerp-v3"
59
+ messages = [{"role": "user", "content": "What is a large language model?"}]
60
+
61
+ tokenizer = AutoTokenizer.from_pretrained(model)
62
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
63
+ pipeline = transformers.pipeline(
64
+ "text-generation",
65
+ model=model,
66
+ torch_dtype=torch.float16,
67
+ device_map="auto",
68
+ )
69
+
70
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
71
+ print(outputs[0]["generated_text"])
72
+ ```