--- base_model: - Kukedlc/NeuralSirKrishna-7b - Kukedlc/NeuralArjuna-7B-DT - Kukedlc/NeuralMaths-Experiment-7b - Kukedlc/NeuralSynthesis-7B-v0.1 library_name: transformers tags: - mergekit - merge license: apache-2.0 --- # NeuralStockFusion-7b ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/5Ex2YG8H1oLXaS25gvZQs.webp) # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co/Kukedlc/NeuralSirKrishna-7b) as a base. ### Models Merged The following models were included in the merge: * [Kukedlc/NeuralArjuna-7B-DT](https://huggingface.co/Kukedlc/NeuralArjuna-7B-DT) * [Kukedlc/NeuralMaths-Experiment-7b](https://huggingface.co/Kukedlc/NeuralMaths-Experiment-7b) * [Kukedlc/NeuralSynthesis-7B-v0.1](https://huggingface.co/Kukedlc/NeuralSynthesis-7B-v0.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Kukedlc/NeuralMaths-Experiment-7b - model: Kukedlc/NeuralArjuna-7B-DT - model: Kukedlc/NeuralSirKrishna-7b - model: Kukedlc/NeuralSynthesis-7B-v0.1 merge_method: model_stock base_model: Kukedlc/NeuralSirKrishna-7b dtype: bfloat16 ``` # Model Inference: ``` python !pip install -qU transformers accelerate bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) MODEL_NAME = 'Kukedlc/NeuralStockFusion-7b' tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', quantization_config=bnb_config) inputs = tokenizer(["What is a large language model, in spanish\n\n"], return_tensors="pt").to('cuda') streamer = TextStreamer(tokenizer) # Despite returning the usual output, the streamer will also print the generated text to stdout. _ = model.generate(**inputs, streamer=streamer, max_new_tokens=256, do_sample=True, temperature=0.7, repetition_penalty=1.4, top_p=0.9) ```