File size: 3,002 Bytes
3e5964c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: CS221-mdeberta-v3-base-randomdrop
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CS221-mdeberta-v3-base-randomdrop

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5440
- F1: 0.6741
- Roc Auc: 0.7756
- Accuracy: 0.4071

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.5661        | 1.0   | 99   | 0.5434          | 0.0    | 0.5     | 0.1425   |
| 0.5054        | 2.0   | 198  | 0.4744          | 0.4852 | 0.6560  | 0.2621   |
| 0.4409        | 3.0   | 297  | 0.4436          | 0.5766 | 0.7104  | 0.3308   |
| 0.3975        | 4.0   | 396  | 0.4284          | 0.6071 | 0.7316  | 0.3588   |
| 0.2827        | 5.0   | 495  | 0.4228          | 0.6095 | 0.7296  | 0.3562   |
| 0.2831        | 6.0   | 594  | 0.4540          | 0.6467 | 0.7642  | 0.3715   |
| 0.1846        | 7.0   | 693  | 0.4519          | 0.6325 | 0.7459  | 0.3893   |
| 0.1752        | 8.0   | 792  | 0.4538          | 0.6426 | 0.7535  | 0.3740   |
| 0.1547        | 9.0   | 891  | 0.4799          | 0.6541 | 0.7642  | 0.3791   |
| 0.1046        | 10.0  | 990  | 0.4793          | 0.6667 | 0.7687  | 0.4020   |
| 0.1052        | 11.0  | 1089 | 0.5001          | 0.6593 | 0.7658  | 0.4046   |
| 0.0843        | 12.0  | 1188 | 0.5069          | 0.6647 | 0.7705  | 0.3893   |
| 0.0653        | 13.0  | 1287 | 0.5275          | 0.6681 | 0.7669  | 0.4097   |
| 0.0575        | 14.0  | 1386 | 0.5455          | 0.6617 | 0.7632  | 0.3944   |
| 0.0503        | 15.0  | 1485 | 0.5440          | 0.6741 | 0.7756  | 0.4071   |
| 0.0499        | 16.0  | 1584 | 0.5555          | 0.6653 | 0.7660  | 0.4097   |
| 0.0431        | 17.0  | 1683 | 0.5557          | 0.6660 | 0.7675  | 0.4020   |
| 0.0422        | 18.0  | 1782 | 0.5599          | 0.6632 | 0.7664  | 0.3944   |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0