--- library_name: transformers license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: cs221-deberta-v3-large-eng-pt results: [] --- # cs221-deberta-v3-large-eng-pt This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3691 - F1: 0.7676 - Roc Auc: 0.8216 - Accuracy: 0.6034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4687 | 1.0 | 173 | 0.4601 | 0.4113 | 0.6309 | 0.3103 | | 0.3504 | 2.0 | 346 | 0.3652 | 0.6879 | 0.7645 | 0.4397 | | 0.2659 | 3.0 | 519 | 0.3636 | 0.7057 | 0.7616 | 0.4397 | | 0.1696 | 4.0 | 692 | 0.3691 | 0.7676 | 0.8216 | 0.6034 | | 0.1001 | 5.0 | 865 | 0.4142 | 0.7647 | 0.8246 | 0.5172 | | 0.0699 | 6.0 | 1038 | 0.4698 | 0.7530 | 0.8034 | 0.4828 | | 0.049 | 7.0 | 1211 | 0.5140 | 0.7219 | 0.7911 | 0.5 | | 0.0253 | 8.0 | 1384 | 0.5917 | 0.7603 | 0.8191 | 0.5345 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0