--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: fold_4_model_roberta results: [] --- # fold_4_model_roberta This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6094 - F1: 0.7390 - Roc Auc: 0.8019 - Accuracy: 0.4144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.0424 | 1.0 | 111 | 0.6255 | 0.7252 | 0.7940 | 0.3784 | | 0.0322 | 2.0 | 222 | 0.6856 | 0.7102 | 0.7831 | 0.3514 | | 0.0205 | 3.0 | 333 | 0.6094 | 0.7390 | 0.8019 | 0.4144 | | 0.0169 | 4.0 | 444 | 0.6782 | 0.7135 | 0.7842 | 0.3694 | | 0.0149 | 5.0 | 555 | 0.6594 | 0.7262 | 0.7939 | 0.3784 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0