--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8339719029374202 - name: Recall type: recall value: 0.8339719029374202 - name: F1 type: f1 value: 0.8319571049551264 - name: Precision type: precision value: 0.8325133593723552 --- # vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3507 - Accuracy: 0.8340 - Recall: 0.8340 - F1: 0.8320 - Precision: 0.8325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | No log | 0.9974 | 293 | 0.6168 | 0.7923 | 0.7923 | 0.7737 | 0.7684 | | No log | 1.9983 | 587 | 0.4599 | 0.8110 | 0.8110 | 0.8056 | 0.8085 | | No log | 2.9991 | 881 | 0.4305 | 0.8233 | 0.8233 | 0.8211 | 0.8250 | | No log | 4.0 | 1175 | 0.3966 | 0.8365 | 0.8365 | 0.8323 | 0.8452 | | No log | 4.9974 | 1468 | 0.4100 | 0.8221 | 0.8221 | 0.8195 | 0.8219 | | No log | 5.9983 | 1762 | 0.3890 | 0.8412 | 0.8412 | 0.8375 | 0.8466 | | No log | 6.9991 | 2056 | 0.3659 | 0.8357 | 0.8357 | 0.8335 | 0.8386 | | No log | 8.0 | 2350 | 0.3562 | 0.8395 | 0.8395 | 0.8379 | 0.8403 | | No log | 8.9974 | 2643 | 0.3613 | 0.8382 | 0.8382 | 0.8373 | 0.8391 | | 0.4339 | 9.9745 | 2930 | 0.3405 | 0.8455 | 0.8455 | 0.8447 | 0.8467 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.19.0 - Tokenizers 0.19.1