KushalBanda
commited on
End of training
Browse files- README.md +81 -0
- logs/events.out.tfevents.1723637769.venkanna-vm01.1122146.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6718
|
21 |
+
- Answer: {'precision': 0.7074235807860262, 'recall': 0.8009888751545118, 'f1': 0.7513043478260869, 'number': 809}
|
22 |
+
- Header: {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7837354781054513, 'recall': 0.8234741784037559, 'f1': 0.8031135531135531, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7242
|
25 |
+
- Overall Recall: 0.7852
|
26 |
+
- Overall F1: 0.7535
|
27 |
+
- Overall Accuracy: 0.8120
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.8183 | 1.0 | 10 | 1.6239 | {'precision': 0.010256410256410256, 'recall': 0.004944375772558714, 'f1': 0.006672226855713093, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18360655737704917, 'recall': 0.05258215962441314, 'f1': 0.08175182481751825, 'number': 1065} | 0.0863 | 0.0301 | 0.0446 | 0.3196 |
|
60 |
+
| 1.4789 | 2.0 | 20 | 1.2907 | {'precision': 0.12058465286236297, 'recall': 0.12237330037082818, 'f1': 0.12147239263803682, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4493717664449372, 'recall': 0.5708920187793427, 'f1': 0.5028949545078577, 'number': 1065} | 0.3252 | 0.3547 | 0.3393 | 0.5843 |
|
61 |
+
| 1.139 | 3.0 | 30 | 0.9533 | {'precision': 0.4473409801876955, 'recall': 0.5302843016069221, 'f1': 0.4852941176470588, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5831399845320959, 'recall': 0.707981220657277, 'f1': 0.6395250212044105, 'number': 1065} | 0.5232 | 0.5936 | 0.5562 | 0.7090 |
|
62 |
+
| 0.8802 | 4.0 | 40 | 0.7961 | {'precision': 0.5869565217391305, 'recall': 0.7676143386897404, 'f1': 0.6652383502945903, 'number': 809} | {'precision': 0.05714285714285714, 'recall': 0.01680672268907563, 'f1': 0.025974025974025972, 'number': 119} | {'precision': 0.6845878136200717, 'recall': 0.7173708920187793, 'f1': 0.7005960568546539, 'number': 1065} | 0.6279 | 0.6959 | 0.6602 | 0.7604 |
|
63 |
+
| 0.6957 | 5.0 | 50 | 0.7201 | {'precision': 0.6137040714995035, 'recall': 0.7639060568603214, 'f1': 0.6806167400881058, 'number': 809} | {'precision': 0.18518518518518517, 'recall': 0.12605042016806722, 'f1': 0.15, 'number': 119} | {'precision': 0.6730769230769231, 'recall': 0.7887323943661971, 'f1': 0.7263294422827496, 'number': 1065} | 0.6306 | 0.7391 | 0.6805 | 0.7774 |
|
64 |
+
| 0.5881 | 6.0 | 60 | 0.6950 | {'precision': 0.6294820717131474, 'recall': 0.7812113720642769, 'f1': 0.6971869829012686, 'number': 809} | {'precision': 0.23684210526315788, 'recall': 0.15126050420168066, 'f1': 0.1846153846153846, 'number': 119} | {'precision': 0.7171453437771975, 'recall': 0.7737089201877935, 'f1': 0.7443541102077688, 'number': 1065} | 0.6613 | 0.7396 | 0.6982 | 0.7890 |
|
65 |
+
| 0.5129 | 7.0 | 70 | 0.6612 | {'precision': 0.6733615221987315, 'recall': 0.7873918417799752, 'f1': 0.7259259259259259, 'number': 809} | {'precision': 0.25, 'recall': 0.24369747899159663, 'f1': 0.24680851063829787, 'number': 119} | {'precision': 0.7306052855924978, 'recall': 0.8046948356807512, 'f1': 0.7658623771224308, 'number': 1065} | 0.6814 | 0.7642 | 0.7204 | 0.8005 |
|
66 |
+
| 0.4565 | 8.0 | 80 | 0.6582 | {'precision': 0.6840458811261731, 'recall': 0.8108776266996292, 'f1': 0.7420814479638008, 'number': 809} | {'precision': 0.28846153846153844, 'recall': 0.25210084033613445, 'f1': 0.26905829596412556, 'number': 119} | {'precision': 0.7543859649122807, 'recall': 0.8075117370892019, 'f1': 0.780045351473923, 'number': 1065} | 0.7018 | 0.7757 | 0.7369 | 0.8050 |
|
67 |
+
| 0.4033 | 9.0 | 90 | 0.6490 | {'precision': 0.7037037037037037, 'recall': 0.7985166872682324, 'f1': 0.7481181239143023, 'number': 809} | {'precision': 0.30357142857142855, 'recall': 0.2857142857142857, 'f1': 0.2943722943722944, 'number': 119} | {'precision': 0.7824116047144152, 'recall': 0.8103286384976526, 'f1': 0.7961254612546125, 'number': 1065} | 0.7234 | 0.7742 | 0.7479 | 0.8103 |
|
68 |
+
| 0.3954 | 10.0 | 100 | 0.6486 | {'precision': 0.7044711014176663, 'recall': 0.7985166872682324, 'f1': 0.7485515643105446, 'number': 809} | {'precision': 0.3185840707964602, 'recall': 0.3025210084033613, 'f1': 0.3103448275862069, 'number': 119} | {'precision': 0.7813333333333333, 'recall': 0.8253521126760563, 'f1': 0.8027397260273973, 'number': 1065} | 0.7244 | 0.7832 | 0.7527 | 0.8159 |
|
69 |
+
| 0.3404 | 11.0 | 110 | 0.6524 | {'precision': 0.7085152838427947, 'recall': 0.8022249690976514, 'f1': 0.7524637681159421, 'number': 809} | {'precision': 0.30833333333333335, 'recall': 0.31092436974789917, 'f1': 0.3096234309623431, 'number': 119} | {'precision': 0.7857142857142857, 'recall': 0.8262910798122066, 'f1': 0.8054919908466819, 'number': 1065} | 0.7263 | 0.7858 | 0.7549 | 0.8134 |
|
70 |
+
| 0.3191 | 12.0 | 120 | 0.6599 | {'precision': 0.7135016465422612, 'recall': 0.8034610630407911, 'f1': 0.7558139534883722, 'number': 809} | {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119} | {'precision': 0.7857785778577858, 'recall': 0.819718309859155, 'f1': 0.8023897058823529, 'number': 1065} | 0.7282 | 0.7822 | 0.7542 | 0.8138 |
|
71 |
+
| 0.3046 | 13.0 | 130 | 0.6726 | {'precision': 0.7176339285714286, 'recall': 0.7948084054388134, 'f1': 0.7542521994134898, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7784642541924095, 'recall': 0.828169014084507, 'f1': 0.802547770700637, 'number': 1065} | 0.7262 | 0.7852 | 0.7546 | 0.8159 |
|
72 |
+
| 0.2839 | 14.0 | 140 | 0.6710 | {'precision': 0.7043478260869566, 'recall': 0.8009888751545118, 'f1': 0.7495662232504339, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7802491103202847, 'recall': 0.8234741784037559, 'f1': 0.801279122887163, 'number': 1065} | 0.7212 | 0.7852 | 0.7519 | 0.8139 |
|
73 |
+
| 0.2826 | 15.0 | 150 | 0.6718 | {'precision': 0.7074235807860262, 'recall': 0.8009888751545118, 'f1': 0.7513043478260869, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7837354781054513, 'recall': 0.8234741784037559, 'f1': 0.8031135531135531, 'number': 1065} | 0.7242 | 0.7852 | 0.7535 | 0.8120 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.44.0
|
79 |
+
- Pytorch 2.4.0+cu121
|
80 |
+
- Datasets 2.21.0
|
81 |
+
- Tokenizers 0.19.1
|
logs/events.out.tfevents.1723637769.venkanna-vm01.1122146.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcdc110ef441089362fa5b7a8467d46b185aef1c93a5e5b726c10aacaf08c628
|
3 |
+
size 16080
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18880c5342a42aeada6e89ea4d0a373d5a14a78965a255f372538403d07f7b12
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|