KushalBanda commited on
Commit
52d33f1
·
verified ·
1 Parent(s): 079939c

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6718
21
+ - Answer: {'precision': 0.7074235807860262, 'recall': 0.8009888751545118, 'f1': 0.7513043478260869, 'number': 809}
22
+ - Header: {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119}
23
+ - Question: {'precision': 0.7837354781054513, 'recall': 0.8234741784037559, 'f1': 0.8031135531135531, 'number': 1065}
24
+ - Overall Precision: 0.7242
25
+ - Overall Recall: 0.7852
26
+ - Overall F1: 0.7535
27
+ - Overall Accuracy: 0.8120
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8183 | 1.0 | 10 | 1.6239 | {'precision': 0.010256410256410256, 'recall': 0.004944375772558714, 'f1': 0.006672226855713093, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18360655737704917, 'recall': 0.05258215962441314, 'f1': 0.08175182481751825, 'number': 1065} | 0.0863 | 0.0301 | 0.0446 | 0.3196 |
60
+ | 1.4789 | 2.0 | 20 | 1.2907 | {'precision': 0.12058465286236297, 'recall': 0.12237330037082818, 'f1': 0.12147239263803682, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4493717664449372, 'recall': 0.5708920187793427, 'f1': 0.5028949545078577, 'number': 1065} | 0.3252 | 0.3547 | 0.3393 | 0.5843 |
61
+ | 1.139 | 3.0 | 30 | 0.9533 | {'precision': 0.4473409801876955, 'recall': 0.5302843016069221, 'f1': 0.4852941176470588, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5831399845320959, 'recall': 0.707981220657277, 'f1': 0.6395250212044105, 'number': 1065} | 0.5232 | 0.5936 | 0.5562 | 0.7090 |
62
+ | 0.8802 | 4.0 | 40 | 0.7961 | {'precision': 0.5869565217391305, 'recall': 0.7676143386897404, 'f1': 0.6652383502945903, 'number': 809} | {'precision': 0.05714285714285714, 'recall': 0.01680672268907563, 'f1': 0.025974025974025972, 'number': 119} | {'precision': 0.6845878136200717, 'recall': 0.7173708920187793, 'f1': 0.7005960568546539, 'number': 1065} | 0.6279 | 0.6959 | 0.6602 | 0.7604 |
63
+ | 0.6957 | 5.0 | 50 | 0.7201 | {'precision': 0.6137040714995035, 'recall': 0.7639060568603214, 'f1': 0.6806167400881058, 'number': 809} | {'precision': 0.18518518518518517, 'recall': 0.12605042016806722, 'f1': 0.15, 'number': 119} | {'precision': 0.6730769230769231, 'recall': 0.7887323943661971, 'f1': 0.7263294422827496, 'number': 1065} | 0.6306 | 0.7391 | 0.6805 | 0.7774 |
64
+ | 0.5881 | 6.0 | 60 | 0.6950 | {'precision': 0.6294820717131474, 'recall': 0.7812113720642769, 'f1': 0.6971869829012686, 'number': 809} | {'precision': 0.23684210526315788, 'recall': 0.15126050420168066, 'f1': 0.1846153846153846, 'number': 119} | {'precision': 0.7171453437771975, 'recall': 0.7737089201877935, 'f1': 0.7443541102077688, 'number': 1065} | 0.6613 | 0.7396 | 0.6982 | 0.7890 |
65
+ | 0.5129 | 7.0 | 70 | 0.6612 | {'precision': 0.6733615221987315, 'recall': 0.7873918417799752, 'f1': 0.7259259259259259, 'number': 809} | {'precision': 0.25, 'recall': 0.24369747899159663, 'f1': 0.24680851063829787, 'number': 119} | {'precision': 0.7306052855924978, 'recall': 0.8046948356807512, 'f1': 0.7658623771224308, 'number': 1065} | 0.6814 | 0.7642 | 0.7204 | 0.8005 |
66
+ | 0.4565 | 8.0 | 80 | 0.6582 | {'precision': 0.6840458811261731, 'recall': 0.8108776266996292, 'f1': 0.7420814479638008, 'number': 809} | {'precision': 0.28846153846153844, 'recall': 0.25210084033613445, 'f1': 0.26905829596412556, 'number': 119} | {'precision': 0.7543859649122807, 'recall': 0.8075117370892019, 'f1': 0.780045351473923, 'number': 1065} | 0.7018 | 0.7757 | 0.7369 | 0.8050 |
67
+ | 0.4033 | 9.0 | 90 | 0.6490 | {'precision': 0.7037037037037037, 'recall': 0.7985166872682324, 'f1': 0.7481181239143023, 'number': 809} | {'precision': 0.30357142857142855, 'recall': 0.2857142857142857, 'f1': 0.2943722943722944, 'number': 119} | {'precision': 0.7824116047144152, 'recall': 0.8103286384976526, 'f1': 0.7961254612546125, 'number': 1065} | 0.7234 | 0.7742 | 0.7479 | 0.8103 |
68
+ | 0.3954 | 10.0 | 100 | 0.6486 | {'precision': 0.7044711014176663, 'recall': 0.7985166872682324, 'f1': 0.7485515643105446, 'number': 809} | {'precision': 0.3185840707964602, 'recall': 0.3025210084033613, 'f1': 0.3103448275862069, 'number': 119} | {'precision': 0.7813333333333333, 'recall': 0.8253521126760563, 'f1': 0.8027397260273973, 'number': 1065} | 0.7244 | 0.7832 | 0.7527 | 0.8159 |
69
+ | 0.3404 | 11.0 | 110 | 0.6524 | {'precision': 0.7085152838427947, 'recall': 0.8022249690976514, 'f1': 0.7524637681159421, 'number': 809} | {'precision': 0.30833333333333335, 'recall': 0.31092436974789917, 'f1': 0.3096234309623431, 'number': 119} | {'precision': 0.7857142857142857, 'recall': 0.8262910798122066, 'f1': 0.8054919908466819, 'number': 1065} | 0.7263 | 0.7858 | 0.7549 | 0.8134 |
70
+ | 0.3191 | 12.0 | 120 | 0.6599 | {'precision': 0.7135016465422612, 'recall': 0.8034610630407911, 'f1': 0.7558139534883722, 'number': 809} | {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119} | {'precision': 0.7857785778577858, 'recall': 0.819718309859155, 'f1': 0.8023897058823529, 'number': 1065} | 0.7282 | 0.7822 | 0.7542 | 0.8138 |
71
+ | 0.3046 | 13.0 | 130 | 0.6726 | {'precision': 0.7176339285714286, 'recall': 0.7948084054388134, 'f1': 0.7542521994134898, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7784642541924095, 'recall': 0.828169014084507, 'f1': 0.802547770700637, 'number': 1065} | 0.7262 | 0.7852 | 0.7546 | 0.8159 |
72
+ | 0.2839 | 14.0 | 140 | 0.6710 | {'precision': 0.7043478260869566, 'recall': 0.8009888751545118, 'f1': 0.7495662232504339, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7802491103202847, 'recall': 0.8234741784037559, 'f1': 0.801279122887163, 'number': 1065} | 0.7212 | 0.7852 | 0.7519 | 0.8139 |
73
+ | 0.2826 | 15.0 | 150 | 0.6718 | {'precision': 0.7074235807860262, 'recall': 0.8009888751545118, 'f1': 0.7513043478260869, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7837354781054513, 'recall': 0.8234741784037559, 'f1': 0.8031135531135531, 'number': 1065} | 0.7242 | 0.7852 | 0.7535 | 0.8120 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.44.0
79
+ - Pytorch 2.4.0+cu121
80
+ - Datasets 2.21.0
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1723637769.venkanna-vm01.1122146.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa655ac2e793046b4938d71d61194a94b08ecd3bdcb9ee7f9ca4d81c52c52618
3
- size 10773
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcdc110ef441089362fa5b7a8467d46b185aef1c93a5e5b726c10aacaf08c628
3
+ size 16080
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc283c245ac7766c6007f37e6190f94fe3e87d294f2da9ae9b7b2b7b274408c5
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18880c5342a42aeada6e89ea4d0a373d5a14a78965a255f372538403d07f7b12
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff