--- library_name: transformers language: - sq license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - Kushtrim/audioshqip metrics: - wer model-index: - name: Whisper Large v3 Turbo Shqip results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Audio Shqip 115 orë type: Kushtrim/audioshqip args: 'config: sq, split: test' metrics: - type: wer value: 22.006858788533318 name: Wer --- # Whisper Large v3 Turbo Shqip This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Audio Shqip 115 orë dataset. It achieves the following results on the evaluation set: - Loss: 0.3322 - Wer: 22.0069 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.5211 | 0.2738 | 500 | 0.5221 | 36.9257 | | 0.4152 | 0.5476 | 1000 | 0.4144 | 31.1469 | | 0.3847 | 0.8215 | 1500 | 0.3747 | 28.2953 | | 0.2703 | 1.0953 | 2000 | 0.3536 | 26.4348 | | 0.2471 | 1.3691 | 2500 | 0.3419 | 25.5897 | | 0.2691 | 1.6429 | 3000 | 0.3293 | 24.5533 | | 0.2426 | 1.9168 | 3500 | 0.3202 | 24.5742 | | 0.1993 | 2.1906 | 4000 | 0.3178 | 23.5548 | | 0.204 | 2.4644 | 4500 | 0.3124 | 23.6609 | | 0.2 | 2.7382 | 5000 | 0.3098 | 23.5131 | | 0.1298 | 3.0120 | 5500 | 0.3101 | 22.5753 | | 0.1213 | 3.2859 | 6000 | 0.3145 | 23.0129 | | 0.1343 | 3.5597 | 6500 | 0.3105 | 22.6511 | | 0.1341 | 3.8335 | 7000 | 0.3076 | 22.3479 | | 0.0895 | 4.1073 | 7500 | 0.3210 | 22.3593 | | 0.0883 | 4.3812 | 8000 | 0.3223 | 22.4786 | | 0.0892 | 4.6550 | 8500 | 0.3182 | 22.1073 | | 0.0937 | 4.9288 | 9000 | 0.3179 | 21.9008 | | 0.0608 | 5.2026 | 9500 | 0.3326 | 22.0466 | | 0.0482 | 5.4765 | 10000 | 0.3322 | 22.0069 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3