pt-sk commited on
Commit
2db647b
·
verified ·
1 Parent(s): 055e17c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -23
README.md CHANGED
@@ -1,24 +1,24 @@
1
- ---
2
- license: mit
3
- datasets: pt-sk/toxic_classification
4
- tags:
5
- - PPO
6
- - RLHF
7
- pipeline_tag: text-generation
8
- ---
9
- Aligning the model using Proximal Policy Optimization (PPO). The goal is to train the model to generate non-toxic reviews. The training process utilizes the `trl` library for reinforcement learning, the `transformers` library for model handling, and `datasets` for dataset management.
10
- Implementation code is available here: [GitHub](https://github.com/sathishkumar67/GPT-2-Non-Toxic-RLHF)
11
- ```python
12
- # Load model and tokenizer directly
13
- from transformers import AutoTokenizer, AutoModelForCausalLM
14
-
15
- tokenizer = AutoTokenizer.from_pretrained("pt-sk/GPT2_NonToxic")
16
- model = AutoModelForCausalLM.from_pretrained("pt-sk/GPT2_NonToxic")
17
-
18
- # Example usage
19
- input_text = "The movie was fantastic"
20
- inputs = tokenizer(input_text, return_tensors='pt')
21
- outputs = model.generate(**inputs)
22
-
23
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
24
  ```
 
1
+ ---
2
+ license: mit
3
+ datasets: Kwaai/toxic_classification
4
+ tags:
5
+ - PPO
6
+ - RLHF
7
+ pipeline_tag: text-generation
8
+ ---
9
+ Aligning the model using Proximal Policy Optimization (PPO). The goal is to train the model to generate non-toxic reviews. The training process utilizes the `trl` library for reinforcement learning, the `transformers` library for model handling, and `datasets` for dataset management.
10
+ Implementation code is available here: [GitHub](https://github.com/sathishkumar67/GPT-2-Non-Toxic-RLHF)
11
+ ```python
12
+ # Load model and tokenizer directly
13
+ from transformers import AutoTokenizer, AutoModelForCausalLM
14
+
15
+ tokenizer = AutoTokenizer.from_pretrained("Kwaai/GPT2_NonToxic")
16
+ model = AutoModelForCausalLM.from_pretrained("Kwaai/GPT2_NonToxic")
17
+
18
+ # Example usage
19
+ input_text = "The movie was fantastic"
20
+ inputs = tokenizer(input_text, return_tensors='pt')
21
+ outputs = model.generate(**inputs)
22
+
23
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
24
  ```