LivePortrait
ONNX
File size: 12,118 Bytes
6d116d1
 
477e235
6d116d1
 
5f3539a
 
6d116d1
 
0f49c88
6d116d1
0f49c88
6d116d1
 
 
 
 
 
 
 
 
 
 
3a3c029
 
 
6d116d1
5f3539a
6d116d1
 
 
 
3a3c029
6d116d1
 
 
 
2d03940
6d116d1
 
 
 
 
 
0f49c88
 
3a3c029
 
 
4c240bd
 
 
 
 
3a3c029
6d116d1
 
 
3a3c029
6d116d1
 
 
 
 
 
3a3c029
6d116d1
3a3c029
6d116d1
3a3c029
6d116d1
3a3c029
 
6d116d1
 
3a3c029
4c240bd
6d116d1
4c240bd
 
 
3a3c029
 
 
 
 
 
4c240bd
 
 
 
 
6d116d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c240bd
6d116d1
3a3c029
6d116d1
3a3c029
 
 
6d116d1
 
3a3c029
6d116d1
 
2d03940
6d116d1
 
 
 
 
3a3c029
6d116d1
 
3a3c029
 
6d116d1
 
 
 
 
3a3c029
 
4c240bd
 
 
 
6d116d1
4c240bd
 
 
 
6d116d1
3a3c029
4c240bd
 
 
 
3a3c029
 
4c240bd
 
 
 
 
6d116d1
 
3a3c029
6d116d1
3a3c029
 
 
6d116d1
 
4c240bd
 
 
 
 
 
 
3a3c029
4c240bd
 
 
6d116d1
 
 
 
3a3c029
6d116d1
 
 
 
 
 
 
 
 
 
 
4c240bd
 
 
 
 
 
 
6d116d1
4c240bd
 
3a3c029
4c240bd
 
 
6d116d1
4c240bd
6d116d1
3a3c029
6d116d1
 
 
 
 
4c240bd
6d116d1
4c240bd
 
 
6d116d1
3a3c029
0f49c88
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
license: mit
library_name: liveportrait
---

<h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1>

<div align='center'>
    <a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1†</sup>&emsp;
    <a href='https://github.com/Mystery099' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup>&emsp;
    <a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup>&emsp;
    <a href='https://github.com/zzzweakman' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup>&emsp;
    <a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup>&emsp;
</div>

<div align='center'>
    <a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup>&emsp;
    <a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup>&emsp;
</div>

<div align='center'>
    <sup>1 </sup>Kuaishou Technology&emsp; <sup>2 </sup>University of Science and Technology of China&emsp; <sup>3 </sup>Fudan University&emsp;
</div>
<div align='center'>
    <small><sup>†</sup> Corresponding author</small>
</div>

<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
  <!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
  <a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a>
  <a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a>
  <a href='https://huggingface.co/spaces/KwaiVGI/liveportrait'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
  <a href="https://github.com/KwaiVGI/LivePortrait"><img src="https://img.shields.io/github/stars/KwaiVGI/LivePortrait"></a>
</div>
<br>

<p align="center">
  <img src="./docs/showcase2.gif" alt="showcase">
  πŸ”₯ For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> πŸ”₯
</p>



## πŸ”₯ Updates
- **`2024/07/25`**: πŸ“¦ Windows users can now download the package from [HuggingFace](https://huggingface.co/cleardusk/LivePortrait-Windows/tree/main) or [BaiduYun](https://pan.baidu.com/s/1FWsWqKe0eNfXrwjEhhCqlw?pwd=86q2). Simply unzip and double-click `run_windows.bat` to enjoy!
- **`2024/07/24`**: 🎨 We support pose editing for source portraits in the Gradio interface. We’ve also lowered the default detection threshold to increase recall. [Have fun](assets/docs/changelog/2024-07-24.md)!
- **`2024/07/19`**: ✨ We support 🎞️ portrait video editing (aka v2v)! More to see [here](assets/docs/changelog/2024-07-19.md).
- **`2024/07/17`**: 🍎 We support macOS with Apple Silicon, modified from [jeethu](https://github.com/jeethu)'s PR [#143](https://github.com/KwaiVGI/LivePortrait/pull/143).
- **`2024/07/10`**: πŸ’ͺ We support audio and video concatenating, driving video auto-cropping, and template making to protect privacy. More to see [here](assets/docs/changelog/2024-07-10.md).
- **`2024/07/09`**: πŸ€— We released the [HuggingFace Space](https://huggingface.co/spaces/KwaiVGI/liveportrait), thanks to the HF team and [Gradio](https://github.com/gradio-app/gradio)!
- **`2024/07/04`**: 😊 We released the initial version of the inference code and models. Continuous updates, stay tuned!
- **`2024/07/04`**: πŸ”₯ We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168).


## Introduction πŸ“–
This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) πŸ’–.

## Getting Started 🏁
### 1. Clone the code and prepare the environment
```bash
git clone https://github.com/KwaiVGI/LivePortrait
cd LivePortrait

# create env using conda
conda create -n LivePortrait python==3.9
conda activate LivePortrait

# install dependencies with pip
# for Linux and Windows users
pip install -r requirements.txt
# for macOS with Apple Silicon users
pip install -r requirements_macOS.txt
```

**Note:** make sure your system has [FFmpeg](https://ffmpeg.org/download.html) installed, including both `ffmpeg` and `ffprobe`!

### 2. Download pretrained weights

The easiest way to download the pretrained weights is from HuggingFace:
```bash
# first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
git lfs install
# clone and move the weights
git clone https://huggingface.co/KwaiVGI/LivePortrait temp_pretrained_weights
mv temp_pretrained_weights/* pretrained_weights/
rm -rf temp_pretrained_weights
```

Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). Unzip and place them in `./pretrained_weights`.

Ensuring the directory structure is as follows, or contains:
```text
pretrained_weights
β”œβ”€β”€ insightface
β”‚   └── models
β”‚       └── buffalo_l
β”‚           β”œβ”€β”€ 2d106det.onnx
β”‚           └── det_10g.onnx
└── liveportrait
    β”œβ”€β”€ base_models
    β”‚   β”œβ”€β”€ appearance_feature_extractor.pth
    β”‚   β”œβ”€β”€ motion_extractor.pth
    β”‚   β”œβ”€β”€ spade_generator.pth
    β”‚   └── warping_module.pth
    β”œβ”€β”€ landmark.onnx
    └── retargeting_models
        └── stitching_retargeting_module.pth
```

### 3. Inference πŸš€

#### Fast hands-on
```bash
# For Linux and Windows
python inference.py

# For macOS with Apple Silicon, Intel not supported, this maybe 20x slower than RTX 4090
PYTORCH_ENABLE_MPS_FALLBACK=1 python inference.py
```

If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image or video, and generated result.

<p align="center">
  <img src="./docs/inference.gif" alt="image">
</p>

Or, you can change the input by specifying the `-s` and `-d` arguments:

```bash
# source input is an image
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4

# source input is a video ✨
python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d0.mp4

# more options to see
python inference.py -h
```

#### Driving video auto-cropping πŸ“’πŸ“’πŸ“’
To use your own driving video, we **recommend**: ⬇️
 - Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
 - Focus on the head area, similar to the example videos.
 - Minimize shoulder movement.
 - Make sure the first frame of driving video is a frontal face with **neutral expression**.

Below is a auto-cropping case by `--flag_crop_driving_video`:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video
```

If you find the results of auto-cropping is not well, you can modify the `--scale_crop_driving_video`, `--vy_ratio_crop_driving_video` options to adjust the scale and offset, or do it manually.

#### Motion template making
You can also use the auto-generated motion template files ending with `.pkl` to speed up inference, and **protect privacy**, such as:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl # portrait animation
python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d5.pkl # portrait video editing
```

### 4. Gradio interface πŸ€—

We also provide a Gradio <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a> interface for a better experience, just run by:

```bash
# For Linux and Windows users (and macOS with Intel??)
python app.py

# For macOS with Apple Silicon users, Intel not supported, this maybe 20x slower than RTX 4090
PYTORCH_ENABLE_MPS_FALLBACK=1 python app.py
```

You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!

πŸš€ We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions.
```bash
# enable torch.compile for faster inference
python app.py --flag_do_torch_compile
```
**Note**: This method is not supported on Windows and macOS.

**Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) πŸ€—**

### 5. Inference speed evaluation πŸš€πŸš€πŸš€
We have also provided a script to evaluate the inference speed of each module:

```bash
# For NVIDIA GPU
python speed.py
```

Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:

| Model                             | Parameters(M) | Model Size(MB) | Inference(ms) |
|-----------------------------------|:-------------:|:--------------:|:-------------:|
| Appearance Feature Extractor      |     0.84      |       3.3      |     0.82      |
| Motion Extractor                  |     28.12     |       108      |     0.84      |
| Spade Generator                   |     55.37     |       212      |     7.59      |
| Warping Module                    |     45.53     |       174      |     5.21      |
| Stitching and Retargeting Modules |     0.23      |       2.3      |     0.31      |

*Note: The values for the Stitching and Retargeting Modules represent the combined parameter counts and total inference time of three sequential MLP networks.*

## Community Resources πŸ€—

Discover the invaluable resources contributed by our community to enhance your LivePortrait experience:

- [ComfyUI-LivePortraitKJ](https://github.com/kijai/ComfyUI-LivePortraitKJ) by [@kijai](https://github.com/kijai)
- [comfyui-liveportrait](https://github.com/shadowcz007/comfyui-liveportrait) by [@shadowcz007](https://github.com/shadowcz007)
- [LivePortrait In ComfyUI](https://www.youtube.com/watch?v=aFcS31OWMjE) by [@Benji](https://www.youtube.com/@TheFutureThinker)
- [LivePortrait hands-on tutorial](https://www.youtube.com/watch?v=uyjSTAOY7yI) by [@AI Search](https://www.youtube.com/@theAIsearch)
- [ComfyUI tutorial](https://www.youtube.com/watch?v=8-IcDDmiUMM) by [@Sebastian Kamph](https://www.youtube.com/@sebastiankamph)
- [Replicate Playground](https://replicate.com/fofr/live-portrait) and [cog-comfyui](https://github.com/fofr/cog-comfyui) by [@fofr](https://github.com/fofr)

And many more amazing contributions from our community!

## Acknowledgements πŸ’
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.

## Citation πŸ’–
If you find LivePortrait useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX:
```bibtex
@article{guo2024liveportrait,
  title   = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control},
  author  = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di},
  journal = {arXiv preprint arXiv:2407.03168},
  year    = {2024}
}
```

## Contact πŸ“§
[**Jianzhu Guo (郭建珠)**](https://guojianzhu.com); **[email protected]**