File size: 11,232 Bytes
533763f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import torch.nn as nn
from torch.hub import load_state_dict_from_url
from typing import Union, List, Dict, Any, cast


__all__ = ['get_vgg']


model_urls = {
    'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
    'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
    'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
    'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
    'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
    'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
    'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
    'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}


class VGG(nn.Module):

    def __init__(
        self,
        num_classes,
        out_keys,
        output_make_layers,
        init_weights: bool = True,
        **kwargs
    ) -> None:
        super(VGG, self).__init__()
        self.stage_id = output_make_layers[0]
        self.features = output_make_layers[1]
        self.num_classes = num_classes
        self.out_keys = out_keys
        if num_classes is not None:
            self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
            self.classifier = nn.Sequential(
                nn.Linear(512 * 7 * 7, 4096),
                nn.ReLU(True),
                nn.Dropout(),
                nn.Linear(4096, 4096),
                nn.ReLU(True),
                nn.Dropout(),
                nn.Linear(4096, num_classes),
            )
        if init_weights:
            self._initialize_weights()

    def forward(self, x: torch.Tensor):
        out_blocks = dict()
        stage = 0
        out_blocks['block%d' % stage] = x

        for idx, op in enumerate(self.features):
            if idx in self.stage_id:
                stage += 1
                x = op(x)
                out_blocks['block%d' % stage] = x
                continue
            x = op(x)

        if self.num_classes is not None:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.classifier(x)
        if self.out_keys is not None:
            out_blocks = {key: out_blocks[key] for key in self.out_keys}
        return x, out_blocks

    def _initialize_weights(self) -> None:
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


def make_layers(in_channels, out_keys, cfg: List[Union[str, int]], batch_norm: bool = False):
    layer_list = []

    idx = 0
    stage_ids = []
    for v in cfg:
        if isinstance(v, int) and v in [1, 2, 3, 4, 5]:
            if v > int(out_keys[-1].replace('block', '')):
                break
            continue
        if v == 'M':
            layer_list += [nn.MaxPool2d(kernel_size=2, stride=2)]
            stage_ids += [idx]
            idx += 1
        else:
            v = cast(int, v)
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layer_list += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
                idx += 3
            else:
                layer_list += [conv2d, nn.ReLU(inplace=True)]
                idx += 2
            in_channels = v

    return stage_ids, nn.Sequential(*layer_list)


cfgs: Dict[str, List[Union[str, int]]] = {
    'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'D': [1, 64, 64, 'M', 2, 128, 128, 'M', 3, 256, 256, 256, 'M', 4, 512, 512, 512, 'M', 5, 512, 512, 512, 'M'],
    'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


def _vgg(in_channels, num_classes, out_keys, arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG:
    if pretrained:
        kwargs['init_weights'] = False
    stage_id, ops = make_layers(in_channels, out_keys, cfgs[cfg], batch_norm=batch_norm)
    model = VGG(num_classes, out_keys, (stage_id, ops), **kwargs)
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
        if in_channels != 3:
            keys = state_dict.keys()
            keys = [x for x in keys if 'features.0.' in x]
            for key in keys:
                del state_dict[key]
        if num_classes != 1000:
            keys = state_dict.keys()
            keys = [x for x in keys if 'classifier' in x]
            for key in keys:
                del state_dict[key]
        if 'block5' not in out_keys:
            keys = list(state_dict.keys())
            for key in keys:
                key_layer_id = int(key.split('.')[1])
                if key_layer_id >= stage_id[-1]:
                    del state_dict[key]
        model.load_state_dict(state_dict)
    return model


def vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
    r"""VGG 11-layer model (configuration "A") from
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs)


def vgg11_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
    r"""VGG 11-layer model (configuration "A") with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs)


def vgg13(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
    r"""VGG 13-layer model (configuration "B")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs)


def vgg13_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
    r"""VGG 13-layer model (configuration "B") with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs)


def vgg16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
    r"""VGG 16-layer model (configuration "D")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)


def vgg16_bn(in_channels, num_classes, out_keys, pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
    r"""VGG 16-layer model (configuration "D") with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg(in_channels, num_classes, out_keys,'vgg16_bn', 'D', True, pretrained, progress, **kwargs)


def vgg19(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
    r"""VGG 19-layer model (configuration "E")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs)


def vgg19_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG:
    r"""VGG 19-layer model (configuration 'E') with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs)


def get_vgg(name='vgg16_bn', pretrained=True, progress=True, num_classes=None, out_keys=None, in_channels=3, **kwargs):

    if pretrained and num_classes != 1000:
        print('warning: num_class is not equal to 1000, which will cause some parameters to fail to load!')
    if pretrained and in_channels != 3:
        print('warning: in_channels is not equal to 3, which will cause some parameters to fail to load!')

    if name == 'vgg16_bn':
        return vgg16_bn(in_channels=in_channels, num_classes=num_classes,
                        out_keys=out_keys, pretrained=pretrained, progress=progress, **kwargs)

    elif name == 'resnet50':
        return _resnet50(name=name, pretrained=pretrained, progress=progress,
                         num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs)
    elif name == 'resnet101':
        return _resnet101(name=name, pretrained=pretrained, progress=progress,
                          num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs)
    elif name == 'resnet152':
        return _resnet152(name=name, pretrained=pretrained, progress=progress,
                          num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs)
    else:
        raise NotImplementedError(r'''{0} is not an available values. \
                                  Please choose one of the available values in
                                   [resnet18, reset50, resnet101, resnet152]'''.format(name))


if __name__ == '__main__':
    model = get_vgg('vgg16_bn', pretrained=True, num_classes=None, in_channels=4, out_keys=['block3'])
    x = torch.rand([2, 3, 512, 512])
    x = model(x)
    torch.save(model.state_dict(), '../../vgg16bns4.pth')