|
import torch |
|
import torch.nn as nn |
|
from torch.hub import load_state_dict_from_url |
|
|
|
__all__ = ['get_resnet', 'BasicBlock'] |
|
|
|
model_urls = { |
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
|
} |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=dilation, groups=groups, bias=False, dilation=dilation) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
base_width=64, dilation=1, norm_layer=None): |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError('BasicBlock only supports groups=1 and base_width=64') |
|
|
|
|
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes, dilation=dilation) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
base_width=64, dilation=1, norm_layer=None): |
|
super(Bottleneck, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
|
|
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, |
|
groups=1, width_per_group=64, replace_stride_with_dilation=None, |
|
norm_layer=None, out_keys=None, in_channels=3, **kwargs): |
|
super(ResNet, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
self.out_keys = out_keys |
|
self.num_classes = num_classes |
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError("replace_stride_with_dilation should be None " |
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d(in_channels, self.inplanes, kernel_size=7, stride=2, padding=3, |
|
bias=False) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, |
|
dilate=replace_stride_with_dilation[0]) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, |
|
dilate=replace_stride_with_dilation[1]) |
|
if 'block5' in self.out_keys: |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, |
|
dilate=replace_stride_with_dilation[2]) |
|
if self.num_classes is not None: |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, self.num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample, self.groups, |
|
self.base_width, previous_dilation, norm_layer)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, groups=self.groups, |
|
base_width=self.base_width, dilation=self.dilation, |
|
norm_layer=norm_layer)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
endpoints = dict() |
|
endpoints['block0'] = x |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
endpoints['block1'] = x |
|
x = self.maxpool(x) |
|
x = self.layer1(x) |
|
endpoints['block2'] = x |
|
x = self.layer2(x) |
|
endpoints['block3'] = x |
|
x = self.layer3(x) |
|
endpoints['block4'] = x |
|
if 'block5' in self.out_keys: |
|
x = self.layer4(x) |
|
endpoints['block5'] = x |
|
|
|
if self.num_classes is not None: |
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
if self.out_keys is not None: |
|
endpoints = {key: endpoints[key] for key in self.out_keys} |
|
return x, endpoints |
|
|
|
|
|
def _resnet(arch, block, layers, pretrained, progress, num_classes=1000, in_channels=3, out_keys=None, **kwargs): |
|
model = ResNet(block, layers, num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) |
|
if pretrained: |
|
state_dict = load_state_dict_from_url(model_urls[arch], |
|
progress=progress) |
|
if in_channels != 3: |
|
keys = state_dict.keys() |
|
keys = [x for x in keys if 'conv1.weight' in x] |
|
for key in keys: |
|
del state_dict[key] |
|
if num_classes !=1000: |
|
keys = state_dict.keys() |
|
keys = [x for x in keys if 'fc' in x] |
|
for key in keys: |
|
del state_dict[key] |
|
if 'block5' not in out_keys: |
|
keys = state_dict.keys() |
|
keys = [x for x in keys if 'layer4' in x] |
|
for key in keys: |
|
del state_dict[key] |
|
model.load_state_dict(state_dict) |
|
print('load resnet model...') |
|
|
|
return model |
|
|
|
|
|
def _resnet18(name='resnet18', pretrained=True, progress=True, num_classes=1000, out_keys=None, **kwargs): |
|
r"""ResNet-18 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet(name, BasicBlock, [2, 2, 2, 2], pretrained, progress, |
|
num_classes=num_classes, out_keys=out_keys, **kwargs) |
|
|
|
def _resnet50(name='resnet50',pretrained=False, progress=True,num_classes=1000,out_keys=None, **kwargs): |
|
r"""ResNet-50 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet(name, Bottleneck, [3, 4, 6, 3], pretrained, progress, |
|
num_classes=num_classes,out_keys=out_keys, |
|
**kwargs) |
|
|
|
|
|
def _resnet101(name='resnet101',pretrained=False, progress=True, num_classes=1000,out_keys=None,**kwargs): |
|
r"""ResNet-101 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet(name, Bottleneck, [3, 4, 23, 3], pretrained, progress, |
|
num_classes=num_classes, out_keys=out_keys, |
|
**kwargs) |
|
|
|
|
|
def _resnet152(name='resnet152',pretrained=False, progress=True,num_classes=1000,out_keys=None,**kwargs): |
|
r"""ResNet-152 model from |
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
progress (bool): If True, displays a progress bar of the download to stderr |
|
""" |
|
return _resnet(name, Bottleneck, [3, 8, 36, 3], pretrained, progress, |
|
num_classes=num_classes, out_keys=out_keys, |
|
**kwargs) |
|
|
|
|
|
def get_resnet(model_name='resnet50', pretrained=True, progress=True, num_classes=1000, out_keys=None, in_channels=3, **kwargs): |
|
''' |
|
Get resnet model with name. |
|
:param name: resnet model name, optional values:[resnet18, reset50, resnet101, resnet152] |
|
:param pretrained: If True, returns a model pre-trained on ImageNet |
|
''' |
|
|
|
if pretrained and num_classes != 1000: |
|
print('warning: num_class is not equal to 1000, which will cause some parameters to fail to load!') |
|
if pretrained and in_channels != 3: |
|
print('warning: in_channels is not equal to 3, which will cause some parameters to fail to load!') |
|
|
|
if model_name == 'resnet18': |
|
return _resnet18(name=model_name, pretrained=pretrained, progress=progress, |
|
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) |
|
elif model_name == 'resnet50': |
|
return _resnet50(name=model_name, pretrained=pretrained, progress=progress, |
|
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) |
|
elif model_name == 'resnet101': |
|
return _resnet101(name=model_name, pretrained=pretrained, progress=progress, |
|
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) |
|
elif model_name == 'resnet152': |
|
return _resnet152(name=model_name, pretrained=pretrained, progress=progress, |
|
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) |
|
else: |
|
raise NotImplementedError(r'''{0} is not an available values. \ |
|
Please choose one of the available values in |
|
[resnet18, reset50, resnet101, resnet152]'''.format(name)) |
|
|
|
|
|
if __name__ == '__main__': |
|
model = get_resnet('resnet18', pretrained=True, num_classes=None, in_channels=3, out_keys=['block4']) |
|
x = torch.rand([2, 3, 256, 256]) |
|
torch.save(model.state_dict(), 'res18nofc.pth') |