---
license: mit
---
Base model: [roberta-large](https://huggingface.co/roberta-large)
Fine tuned for persuadee donation detection on the [Persuasion For Good Dataset](https://gitlab.com/ucdavisnlp/persuasionforgood) (Wang et al., 2019):
Given a complete dialogue from Persuasion For Good, the task is to predict the binary label:
- 0: the persuadee does not intend to donate
- 1: the persuadee intends to donate
Only persuadee utterances are input to the model for this task - persuader utterances are discarded. Each training example is the concatenation of all persuadee utterances in a single dialogue, each separated by the `` token.
For example:
**Input**: `How are you?Can you tell me more about the charity?...Sure, I'll donate a dollar....`
**Label**: 1
**Input**: `How are you?Can you tell me more about the charity?...I am not interested....`
**Label**: 0
The following Dialogues were excluded:
- 146 dialogues where a donation of 0 was made at the end of the task but a non-zero amount was pledged by the persuadee in the dialogue, per the following regular expression: `(?:\$(?:0\.)?[1-9]|[1-9][.0-9]*?(?: ?\$| dollars?| cents?))`
Data Info:
- **Training set**: 587 dialogues, using actual end-task donations as labels
- **Validation set**: 141 dialogues, using manual donation intention labels from Persuasion For Good 'AnnSet'
- **Test set**: 143 dialogues, using manual donation intention labels from Persuasion For Good 'AnnSet'
Training Info:
- **Loss**: CrossEntropy with class weights: 1.5447 (class 0) and 0.7393 (class 1). These weights were derived from the training split.
- **Early Stopping**: The checkpoint with the highest validation macro f1 was selected. This occurred at step 35 (see training metrics for more detail).
Testing Info:
- **Test Macro F1**: 0.893
- **Test Accuracy**: 0.902