File size: 7,817 Bytes
5378f8f
 
 
d6111a7
c22eb79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5378f8f
 
 
 
 
 
b4fac5f
5378f8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536ecd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5378f8f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
tags:
- Multilingual
license: mit
language:
- af
- am
- ar
- hy
- as
- ast
- az
- be
- bn
- bs
- bg
- my
- ca
- ceb
- zho
- hr
- cs
- da
- nl
- en
- et
- tl
- fi
- fr
- ff
- gl
- lg
- ka
- de
- el
- gu
- ha
- he
- hi
- hu
- is
- ig
- id
- ga
- it
- ja
- jv
- kea
- kam
- kn
- kk
- km
- ko
- ky
- lo
- lv
- ln
- lt
- luo
- lb
- mk
- ms
- ml
- mt
- mi
- mr
- mn
- ne
- ns
- no
- ny
- oc
- or
- om
- ps
- fa
- pl
- pt
- pa
- ro
- ru
- sr
- sn
- sd
- sk
- sl
- so
- ku
- es
- sw
- sv
- tg
- ta
- te
- th
- tr
- uk
- umb
- ur
- uz
- vi
- cy
- wo
- xh
- yo
- zu
---
### Model Sources

- **Paper**: LLaMAX: Scaling Linguistic Horizons of LLM by Enhancing Translation Capabilities Beyond 100 Languages
- **Link**: https://arxiv.org/pdf/2407.05975
- **Repository**: https://github.com/CONE-MT/LLaMAX/
- **Demo**: https://huggingface.co/spaces/vilarin/LLaMAX3-Translator Thanks for the efforts from @AnnioDance. 

### Model Description

LLaMAX is a language model with powerful multilingual capabilities without loss instruction-following capabilities. 

We collected extensive training sets in 102 languages for continued pre-training of Llama2 and leveraged the English instruction fine-tuning dataset, Alpaca, to fine-tune its instruction-following capabilities.

### 🔥 Effortless Multilingual Translation with a Simple Prompt

LLaMAX supports translation between more than 100 languages, surpassing the performance of similarly scaled LLMs.

```angular2html
def Prompt_template(query, src_language, trg_language):
    instruction = f'Translate the following sentences from {src_language} to {trg_language}.'
    prompt = (
        'Below is an instruction that describes a task, paired with an input that provides further context. '
        'Write a response that appropriately completes the request.\n'
        f'### Instruction:\n{instruction}\n'
        f'### Input:\n{query}\n### Response:'
    )
    return prompt
```

And then run the following codes to execute translation:
```angular2html
from transformers import AutoTokenizer, LlamaForCausalLM

model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

query = "你好,今天是个好日子"
prompt = Prompt_template(query, 'Chinese', 'English')
inputs = tokenizer(prompt, return_tensors="pt")

generate_ids = model.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# => "Hello, today is a good day"
```


### 🔥 Excellent Translation Performance

LLaMAX3-8B-Alpaca achieves an average spBLEU score improvement of over **5 points** compared to the LLaMA3-8B-Alpaca model on the Flores-101 dataset.


| System             | Size | en-X (COMET)       | en-X (BLEU) | zh-X (COMET)| zh-X (BLEU) | de-X (COMET) | de-X (BLEU) | ne-X (COMET) | ne-X (BLEU) |ar-X (COMET) | ar-X (BLEU) | az-X (COMET) | az-X (BLEU) | ceb-X (COMET) | ceb-X (BLEU)|
|--------------------|------|--------------------|-------------| ----| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 
| LLaMA3-8B-Alpaca      | 8B   |67.97|17.23|64.65|10.14|64.67|13.62|62.95|7.96|63.45|11.27|60.61|6.98|55.26|8.52|
| LLaMAX3-8B-Alpaca | 8B   |75.52|22.77|73.16|14.43|73.47|18.95|75.13|15.32|72.29|16.42|72.06|12.41|68.88|15.85|


| System             | Size | X-en (COMET) | X-en (BLEU) | X-zh (COMET)| X-zh (BLEU) | X-de (COMET) | X-de (BLEU) | X-ne (COMET) | X-ne (BLEU) |X-ar (COMET) | X-ar (BLEU) | X-az (COMET) | X-az (BLEU) | X-ceb (COMET) | X-ceb (BLEU) |
|--------------------|------|----------------|-------------| ----| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |--------------| 
| LLaMA3-8B-Alpaca      | 8B   |77.43|26.55|73.56|13.17|71.59|16.82|46.56|3.83|66.49|10.20|58.30|4.81|52.68|4.18|
| LLaMAX3-8B-Alpaca | 8B   |81.28|31.85|78.34|16.46|76.23|20.64|65.83|14.16|75.84|15.45|70.61|9.32|63.35|12.66|


### Supported Languages
Akrikaans (af), Amharic (am), Arabic (ar), Armenian (hy), Assamese (as), Asturian (ast), Azerbaijani (az), Belarusian (be), Bengali (bn), Bosnian (bs), Bulgarian (bg), Burmese (my), Catalan (ca), Cebuano (ceb), Chinese Simpl (zho), Chinese Trad (zho), Croatian (hr), Czech (cs), Danish (da), Dutch (nl), English (en), Estonian (et), Filipino (tl), Finnish (fi), French (fr), Fulah (ff), Galician (gl), Ganda (lg), Georgian (ka), German (de), Greek (el), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Hungarian (hu), Icelandic (is), Igbo (ig), Indonesian (id), Irish (ga), Italian (it), Japanese (ja), Javanese (jv), Kabuverdianu (kea), Kamba (kam), Kannada (kn), Kazakh (kk), Khmer (km), Korean (ko), Kyrgyz (ky), Lao (lo), Latvian (lv), Lingala (ln), Lithuanian (lt), Luo (luo), Luxembourgish (lb), Macedonian (mk), Malay (ms), Malayalam (ml), Maltese (mt), Maori (mi), Marathi (mr), Mongolian (mn), Nepali (ne), Northern Sotho (ns), Norwegian (no), Nyanja (ny), Occitan (oc), Oriya (or), Oromo (om), Pashto (ps), Persian (fa), Polish (pl), Portuguese (pt), Punjabi (pa), Romanian (ro), Russian (ru), Serbian (sr), Shona (sn), Sindhi (sd), Slovak (sk), Slovenian (sl), Somali (so), Sorani Kurdish (ku), Spanish (es), Swahili (sw), Swedish (sv), Tajik (tg), Tamil (ta), Telugu (te), Thai (th), Turkish (tr), Ukrainian (uk), Umbundu (umb), Urdu (ur), Uzbek (uz), Vietnamese (vi), Welsh (cy), Wolof (wo), Xhosa (xh), Yoruba (yo), Zulu (zu)

### Model Index
We implement multiple versions of the LLaMAX model, the model links are as follows:

| Model   | LLaMAX                                               | LLaMAX-Alpaca                                               |
|---------|----------------------------------------------------------|-----------------------------------------------------------------|
| Llama-2 | [Link](https://huggingface.co/LLaMAX/LLaMAX2-7B) | [Link](https://huggingface.co/LLaMAX/LLaMAX2-7B-Alpaca) |
| Llama-3 | [Link](https://huggingface.co/LLaMAX/LLaMAX3-8B-8B) | [Link](https://huggingface.co/LLaMAX/LLaMAX3-8B-8B-Alpaca) |

### Citation
If our model helps your work, please cite this paper:

```
@inproceedings{lu-etal-2024-llamax,
    title = "{LL}a{MAX}: Scaling Linguistic Horizons of {LLM} by Enhancing Translation Capabilities Beyond 100 Languages",
    author = "Lu, Yinquan  and
      Zhu, Wenhao  and
      Li, Lei  and
      Qiao, Yu  and
      Yuan, Fei",
    editor = "Al-Onaizan, Yaser  and
      Bansal, Mohit  and
      Chen, Yun-Nung",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
    month = nov,
    year = "2024",
    address = "Miami, Florida, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.findings-emnlp.631",
    doi = "10.18653/v1/2024.findings-emnlp.631",
    pages = "10748--10772",
    abstract = "Large Language Models (LLMs) demonstrate remarkable translation capabilities in high-resource language tasks, yet their performance in low-resource languages is hindered by insufficient multilingual data during pre-training. To address this, we conduct extensive multilingual continual pre-training on the LLaMA series models, enabling translation support across more than 100 languages. Through a comprehensive analysis of training strategies, such as vocabulary expansion and data augmentation, we develop LLaMAX. Remarkably, without sacrificing its generalization ability, LLaMAX achieves significantly higher translation performance compared to existing open-source LLMs (by more than 10 spBLEU points) and performs on-par with specialized translation model (M2M-100-12B) on the Flores-101 benchmark. Extensive experiments indicate that LLaMAX can serve as a robust multilingual foundation model. The code and the models are publicly available.",
}
```