LOHAMEIT commited on
Commit
7263eda
·
verified ·
1 Parent(s): c862795

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Amod/mental_health_counseling_conversations
4
+ base_model:
5
+ - meta-llama/Llama-3.1-8B-Instruct
6
+ tags:
7
+ - mental_health
8
+ ---
9
+ Here’s a `README.md` file tailored for your AI project on Hugging Face. This README assumes your model is designed for facial expression recognition with fine-tuning on mental health counseling conversations. Make sure to replace placeholders like `YOUR_USERNAME` with actual details as needed.
10
+
11
+ ---
12
+
13
+ # Facial Expression and Mental Health Counseling AI Model
14
+
15
+ [![Hugging Face](https://img.shields.io/badge/Model-Hugging%20Face-blue)](https://huggingface.co/LOHAMEIT/BITShyd)
16
+
17
+ ### Project Overview
18
+
19
+ This AI model combines **facial expression recognition** with **mental health counseling-focused dialogue generation**. Fine-tuned on the `Amod/mental_health_counseling_conversations` dataset using **LoRA** (Low-Rank Adaptation) and **Unsloth**, this model is designed to offer empathetic responses based on visual and conversational cues, suitable for virtual counselors or mental health assistants.
20
+
21
+ Key capabilities:
22
+ - **Real-time Emotion Recognition** from facial expressions
23
+ - **Contextually Relevant Responses** in a supportive, conversational tone
24
+
25
+ ### Model Summary
26
+
27
+ - **Model Type**: Conversational AI with facial expression support
28
+ - **Training Dataset**: [Amod/mental_health_counseling_conversations](https://huggingface.co/datasets/Amod/mental_health_counseling_conversations)
29
+ - **Fine-Tuning Techniques**: LoRA and Unsloth for efficient, optimized adaptation
30
+ - **Usage Applications**: Mental health support, virtual assistants, interactive emotional AI
31
+
32
+ ---
33
+
34
+ ## Quick Start
35
+
36
+ 1. **Load the Model**
37
+ ```python
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained("LOHAMEIT/BITShyd")
41
+ model = AutoModelForCausalLM.from_pretrained("LOHAMEIT/BITShyd")
42
+ ```
43
+
44
+ 2. **Prepare the Input**
45
+ - Ensure the input text or image follows the required pre-processing steps for facial expression recognition.
46
+ - Use `transformers` for text and facial expression embeddings to create a blended emotional context.
47
+
48
+ 3. **Generate a Response**
49
+ ```python
50
+ inputs = tokenizer("User input text here", return_tensors="pt")
51
+ output = model.generate(**inputs)
52
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
53
+ ```
54
+
55
+ ---
56
+
57
+ ### Training and Fine-Tuning
58
+
59
+ This model was fine-tuned with **LoRA** and **Unsloth**:
60
+
61
+ - **LoRA** enables efficient training with limited resources by reducing the dimensionality of model parameters, while retaining high accuracy.
62
+ - **Unsloth** minimizes latency and optimizes response generation, improving the model's suitability for real-time applications.
63
+
64
+ 1. **Install LoRA & Unsloth**:
65
+ ```bash
66
+ pip install lora unsloth
67
+ ```
68
+
69
+ 2. **Fine-Tune on Custom Dataset** (if desired):
70
+ ```python
71
+ from lora import LoraTrainer
72
+ trainer = LoraTrainer(model, dataset="Amod/mental_health_counseling_conversations")
73
+ trainer.train()
74
+ ```
75
+
76
+ ### Model Details
77
+
78
+ | Parameter | Description |
79
+ |-----------------|------------------------------------|
80
+ | Model Size | 8 Billion Parameters |
81
+ | Fine-Tuning | LoRA + Unsloth |
82
+ | Dataset | Amod/mental_health_counseling_conversations |
83
+ | Primary Use | Mental Health AI, Virtual Support |
84
+
85
+ ### Example Use Case
86
+
87
+ The model is designed to recognize and interpret facial expressions alongside counseling conversations. This interaction facilitates emotionally supportive responses, tailored for user needs in mental health applications or personal emotional assistants.
88
+
89
+ ---
90
+
91
+ ## License
92
+
93
+ This model and dataset are licensed for non-commercial use. For more details, see [LICENSE](LICENSE.md).
94
+
95
+ ---
96
+
97
+ Explore the model on Hugging Face: [LOHAMEIT/BITShyd](https://huggingface.co/LOHAMEIT/BITShyd)
98
+
99
+ ---