--- base_model: microsoft/dit-base-finetuned-rvlcdip tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: CV_model_2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9941275167785235 --- # CV_model_2 This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0113 - Accuracy: 0.9941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0374 | 0.9954 | 162 | 0.0350 | 0.9866 | | 0.0233 | 1.9969 | 325 | 0.0258 | 0.9891 | | 0.0253 | 2.9985 | 488 | 0.0188 | 0.9916 | | 0.0103 | 4.0 | 651 | 0.0283 | 0.9908 | | 0.0065 | 4.9770 | 810 | 0.0113 | 0.9941 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1