--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: SPIE_MULTICLASS_NVIDIA_2_4 results: [] --- # SPIE_MULTICLASS_NVIDIA_2_4 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4208 - Accuracy: 0.8610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.7364 | 0.96 | 18 | 1.1654 | 0.6229 | | 0.9982 | 1.9733 | 37 | 0.6633 | 0.7719 | | 0.6537 | 2.9867 | 56 | 0.5285 | 0.8082 | | 0.5492 | 4.0 | 75 | 0.4331 | 0.8556 | | 0.5101 | 4.8 | 90 | 0.4208 | 0.8610 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0