Aakash-Tripathi commited on
Commit
736ec1a
·
verified ·
1 Parent(s): 1c94f27

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +101 -3
README.md CHANGED
@@ -1,3 +1,101 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - medical
5
+ - radiology
6
+ - image-classification
7
+ - pytorch
8
+ - radimagenet
9
+ library_name: pytorch
10
+ ---
11
+
12
+ # RadImageNet Pre-trained Models
13
+
14
+ This repository contains pre-trained models from RadImageNet, a large-scale radiologic image dataset designed to facilitate transfer learning for medical imaging applications.
15
+
16
+ ## Model Description
17
+
18
+ RadImageNet models are convolutional neural networks pre-trained on a diverse collection of radiologic images spanning multiple modalities and anatomical regions. These models serve as powerful feature extractors for downstream medical imaging tasks.
19
+
20
+ ### Available Models
21
+
22
+ - **ResNet50.pt**: ResNet-50 architecture pre-trained on RadImageNet
23
+ - **DenseNet121.pt**: DenseNet-121 architecture pre-trained on RadImageNet
24
+ - **InceptionV3.pt**: Inception-V3 architecture pre-trained on RadImageNet
25
+
26
+ ## Usage
27
+
28
+ ```python
29
+ import torch
30
+ from huggingface_hub import hf_hub_download
31
+
32
+ # Download and load a model
33
+ model_path = hf_hub_download(repo_id="Lab-Rasool/RadImageNet", filename="ResNet50.pt")
34
+ model = torch.load(model_path, map_location="cuda" if torch.cuda.is_available() else "cpu")
35
+ model.eval()
36
+
37
+ # Use for inference
38
+ # ... your inference code here ...
39
+ ```
40
+
41
+ ## Preprocessing
42
+
43
+ Images should be preprocessed using standard ImageNet normalization:
44
+
45
+ ```python
46
+ from torchvision import transforms
47
+
48
+ preprocess = transforms.Compose([
49
+ transforms.Resize(256),
50
+ transforms.CenterCrop(224),
51
+ transforms.ToTensor(),
52
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
53
+ ])
54
+ ```
55
+
56
+ ## Citation
57
+
58
+ If you use these models in your research, please cite the RadImageNet paper:
59
+
60
+ ```bibtex
61
+ @article{mei2022radimagenet,
62
+ title={RadImageNet: An Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning},
63
+ author={Mei, Xueyan and Liu, Zelong and Robson, Philip M and Marinelli, Brett and Huang, Mingqian and Doshi, Amish and Jacobi, Adam and Cao, Chendi and Link, Katherine E and Yang, Thomas and others},
64
+ journal={Radiology: Artificial Intelligence},
65
+ volume={4},
66
+ number={5},
67
+ pages={e210315},
68
+ year={2022},
69
+ publisher={Radiological Society of North America}
70
+ }
71
+ ```
72
+
73
+ ## License
74
+
75
+ MIT License
76
+
77
+ Copyright (c) 2021 BMEII-AI
78
+
79
+ Permission is hereby granted, free of charge, to any person obtaining a copy
80
+ of this software and associated documentation files (the "Software"), to deal
81
+ in the Software without restriction, including without limitation the rights
82
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
83
+ copies of the Software, and to permit persons to whom the Software is
84
+ furnished to do so, subject to the following conditions:
85
+
86
+ The above copyright notice and this permission notice shall be included in all
87
+ copies or substantial portions of the Software.
88
+
89
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
90
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
91
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
92
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
93
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
94
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
95
+ SOFTWARE.
96
+
97
+ ## Additional Information
98
+
99
+ - **Original Repository**: [BMEII-AI/RadImageNet](https://github.com/BMEII-AI/RadImageNet)
100
+ - **Paper**: [RadImageNet: An Open Radiologic Deep Learning Research Dataset](https://pubs.rsna.org/doi/10.1148/ryai.210315)
101
+ - **Dataset**: The RadImageNet dataset contains 1.35 million annotated radiologic images