tuan.ljn
commited on
Commit
·
b39a198
1
Parent(s):
ef54d41
Add: add README
Browse files
.ipynb_checkpoints/README-checkpoint.md
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
---
|
2 |
-
library_name: sentence-transformers
|
3 |
-
pipeline_tag: sentence-similarity
|
4 |
-
tags:
|
5 |
-
- sentence-transformers
|
6 |
-
- feature-extraction
|
7 |
-
- sentence-similarity
|
8 |
-
- transformers
|
9 |
-
- sentence-embedding
|
10 |
-
license: apache-2.0
|
11 |
-
language:
|
12 |
-
- fr
|
13 |
-
metrics:
|
14 |
-
- pearsonr
|
15 |
-
- spearmanr
|
16 |
-
---
|
17 |
-
|
18 |
-
# [bilingual-embedding-base](https://huggingface.co/Lajavaness/bilingual-embedding-base)
|
19 |
-
|
20 |
-
bilingual-embedding is the Embedding Model for bilingual language: french and english. This model is a specialized sentence-embedding trained specifically for the bilingual language, leveraging the robust capabilities of [XLM-RoBERTa](https://huggingface.co/FacebookAI/xlm-roberta-base), a pre-trained language model based on the [XLM-RoBERTa](https://huggingface.co/FacebookAI/xlm-roberta-base) architecture. The model utilizes xlm-roberta to encode english-french sentences into a 1024-dimensional vector space, facilitating a wide range of applications from semantic search to text clustering. The embeddings capture the nuanced meanings of english-french sentences, reflecting both the lexical and contextual layers of the language.
|
21 |
-
|
22 |
-
|
23 |
-
## Full Model Architecture
|
24 |
-
```
|
25 |
-
SentenceTransformer(
|
26 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
|
27 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
28 |
-
(2): Normalize()
|
29 |
-
)
|
30 |
-
```
|
31 |
-
|
32 |
-
## Training and Fine-tuning process
|
33 |
-
#### Stage 1: NLI Training
|
34 |
-
- Dataset: [(SNLI+XNLI) for english+french]
|
35 |
-
- Method: Training using Multi-Negative Ranking Loss. This stage focused on improving the model's ability to discern and rank nuanced differences in sentence semantics.
|
36 |
-
### Stage 3: Continued Fine-tuning for Semantic Textual Similarity on STS Benchmark
|
37 |
-
- Dataset: [STSB-fr and en]
|
38 |
-
- Method: Fine-tuning specifically for the semantic textual similarity benchmark using Siamese BERT-Networks configured with the 'sentence-transformers' library.
|
39 |
-
### Stage 4: Advanced Augmentation Fine-tuning
|
40 |
-
- Dataset: STSB-vn with generate [silver sample from gold sample](https://www.sbert.net/examples/training/data_augmentation/README.html)
|
41 |
-
- Method: Employed an advanced strategy using [Augmented SBERT](https://arxiv.org/abs/2010.08240) with Pair Sampling Strategies, integrating both Cross-Encoder and Bi-Encoder models. This stage further refined the embeddings by enriching the training data dynamically, enhancing the model's robustness and accuracy.
|
42 |
-
|
43 |
-
|
44 |
-
## Usage:
|
45 |
-
|
46 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
47 |
-
|
48 |
-
```
|
49 |
-
pip install -U sentence-transformers
|
50 |
-
pip install -q pyvi
|
51 |
-
```
|
52 |
-
|
53 |
-
Then you can use the model like this:
|
54 |
-
|
55 |
-
```python
|
56 |
-
from sentence_transformers import SentenceTransformer
|
57 |
-
from pyvi.ViTokenizer import tokenize
|
58 |
-
|
59 |
-
sentences = ["Paris est une capitale de la France", "Paris is a capital of France"]
|
60 |
-
|
61 |
-
model = SentenceTransformer('Lajavaness/bilingual-embedding-base', trust_remote_code=True)
|
62 |
-
print(embeddings)
|
63 |
-
|
64 |
-
```
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
## Evaluation
|
71 |
-
|
72 |
-
TODO
|
73 |
-
|
74 |
-
## Citation
|
75 |
-
|
76 |
-
@article{conneau2019unsupervised,
|
77 |
-
title={Unsupervised cross-lingual representation learning at scale},
|
78 |
-
author={Conneau, Alexis and Khandelwal, Kartikay and Goyal, Naman and Chaudhary, Vishrav and Wenzek, Guillaume and Guzm{\'a}n, Francisco and Grave, Edouard and Ott, Myle and Zettlemoyer, Luke and Stoyanov, Veselin},
|
79 |
-
journal={arXiv preprint arXiv:1911.02116},
|
80 |
-
year={2019}
|
81 |
-
}
|
82 |
-
|
83 |
-
@article{reimers2019sentence,
|
84 |
-
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
|
85 |
-
author={Nils Reimers, Iryna Gurevych},
|
86 |
-
journal={https://arxiv.org/abs/1908.10084},
|
87 |
-
year={2019}
|
88 |
-
}
|
89 |
-
|
90 |
-
@article{thakur2020augmented,
|
91 |
-
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
|
92 |
-
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
|
93 |
-
journal={arXiv e-prints},
|
94 |
-
pages={arXiv--2010},
|
95 |
-
year={2020}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/config-checkpoint.json
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "dangvantuan/bilingual_impl",
|
3 |
-
"architectures": [
|
4 |
-
"BilingualModel"
|
5 |
-
],
|
6 |
-
"model_type": "bilingual",
|
7 |
-
"auto_map": {
|
8 |
-
"AutoConfig":"dangvantuan/bilingual_impl--config.BilingualConfig",
|
9 |
-
"AutoModel": "dangvantuan/bilingual_impl--modeling.BilingualModel",
|
10 |
-
"AutoModelForMaskedLM": "dangvantuan/bilingual_impl--modeling.BilingualForMaskedLM",
|
11 |
-
"AutoModelForMultipleChoice": "dangvantuan/bilingual_impl--modeling.BilingualForMultipleChoice",
|
12 |
-
"AutoModelForQuestionAnswering": "dangvantuan/bilingual_impl--modeling.BilingualForQuestionAnswering",
|
13 |
-
"AutoModelForSequenceClassification": "dangvantuan/bilingual_impl--modeling.BilingualForSequenceClassification",
|
14 |
-
"AutoModelForTokenClassification": "dangvantuan/bilingual_impl--modeling.BilingualForTokenClassification"
|
15 |
-
},
|
16 |
-
"attention_probs_dropout_prob": 0.1,
|
17 |
-
"classifier_dropout": null,
|
18 |
-
"bos_token_id": 0,
|
19 |
-
"eos_token_id": 2,
|
20 |
-
"hidden_act": "gelu",
|
21 |
-
"hidden_dropout_prob": 0.1,
|
22 |
-
"hidden_size": 768,
|
23 |
-
"initializer_range": 0.02,
|
24 |
-
"intermediate_size": 3072,
|
25 |
-
"layer_norm_eps": 1e-05,
|
26 |
-
"max_position_embeddings": 514,
|
27 |
-
"num_attention_heads": 12,
|
28 |
-
"num_hidden_layers": 12,
|
29 |
-
"output_past": true,
|
30 |
-
"pad_token_id": 1,
|
31 |
-
"position_embedding_type": "absolute",
|
32 |
-
"torch_dtype": "float16",
|
33 |
-
"transformers_version": "4.39.1",
|
34 |
-
"type_vocab_size": 1,
|
35 |
-
"use_cache": true,
|
36 |
-
"vocab_size": 250002
|
37 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/config_sentence_transformers-checkpoint.json
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"__version__": {
|
3 |
-
"sentence_transformers": "2.7.0",
|
4 |
-
"transformers": "4.38.2",
|
5 |
-
"pytorch": "2.2.1+cu121"
|
6 |
-
},
|
7 |
-
"prompts": {},
|
8 |
-
"default_prompt_name": null
|
9 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|