dangvantuan commited on
Commit
5acf869
·
1 Parent(s): 676f964

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -4
README.md CHANGED
@@ -1,8 +1,139 @@
1
  ---
2
  pipeline_tag: sentence-similarity
 
 
 
3
  tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
1
  ---
2
  pipeline_tag: sentence-similarity
3
+ language: fr
4
+ datasets:
5
+ - stsb_multi_mt
6
  tags:
7
+ - Text
8
+ - Sentence Similarity
9
+ - Sentence-Embedding
10
+ - camembert-large
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: sentence-camembert-large by Van Tuan DANG
14
+ results:
15
+ - task:
16
+ name: Sentence-Embedding
17
+ type: Text Similarity
18
+ dataset:
19
+ name: Text Similarity fr
20
+ type: stsb_multi_mt
21
+ args: fr
22
+ metrics:
23
+ - name: Test Pearson correlation coefficient
24
+ type: Pearson_correlation_coefficient
25
+ value: 88.63
26
+ ---
27
+ ## Description:
28
+ This [**Sentence-CamemBERT-Large**] Model is an Embedding Model for French developed by [La Javaness](https://www.lajavaness.com/). The purpose of this embedding model is to represent the content and semantics of a French sentence as a mathematical vector, allowing it to understand the meaning of the text beyond individual words in queries and documents. It offers powerful semantic search capabilities.
29
+ ## Pre-trained sentence embedding models are state-of-the-art of Sentence Embeddings for French.
30
+
31
+ The [Lajavaness/sentence-camembert-large](https://huggingface.co/Lajavaness/sentence-camembert-large) model is an improvement over the [dangvantuan/sentence-camembert-base](https://huggingface.co/dangvantuan/sentence-camembert-large) offering greater robustness and better performance on all STS benchmark datasets. It has been fine-tuned using the pre-trained [facebook/camembert-large](https://huggingface.co/camembert/camembert-large) and
32
+ [Siamese BERT-Networks with 'sentences-transformers'](https://www.sbert.net/) on dataset [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train). Additionally, it has been combined with [Augmented SBERT](https://aclanthology.org/2021.naacl-main.28.pdf) on dataset [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train). The model benefits from Pair Sampling Strategies using two models: [CrossEncoder-camembert-large](https://huggingface.co/dangvantuan/CrossEncoder-camembert-large) and [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)
33
+
34
+ ## Usage
35
+ The model can be used directly (without a language model) as follows:
36
+
37
+ ```python
38
+ from sentence_transformers import SentenceTransformer
39
+ model = SentenceTransformer("Lajavaness/sentence-camembert-large")
40
+
41
+ sentences = ["Un avion est en train de décoller.",
42
+ "Un homme joue d'une grande flûte.",
43
+ "Un homme étale du fromage râpé sur une pizza.",
44
+ "Une personne jette un chat au plafond.",
45
+ "Une personne est en train de plier un morceau de papier.",
46
+ ]
47
+
48
+ embeddings = model.encode(sentences)
49
+ ```
50
+
51
+ ## Evaluation
52
+ The model can be evaluated as follows on the French test data of stsb.
53
+
54
+ ```python
55
+ from sentence_transformers import SentenceTransformer
56
+ from sentence_transformers.readers import InputExample
57
+ from datasets import load_dataset
58
+ def convert_dataset(dataset):
59
+ dataset_samples=[]
60
+ for df in dataset:
61
+ score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1
62
+ inp_example = InputExample(texts=[df['sentence1'],
63
+ df['sentence2']], label=score)
64
+ dataset_samples.append(inp_example)
65
+ return dataset_samples
66
+
67
+ # Loading the dataset for evaluation
68
+ df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev")
69
+ df_test = load_dataset("stsb_multi_mt", name="fr", split="test")
70
+
71
+ # Convert the dataset for evaluation
72
+
73
+ # For Dev set:
74
+ dev_samples = convert_dataset(df_dev)
75
+ val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
76
+ val_evaluator(model, output_path="./")
77
+
78
+ # For Test set:
79
+ test_samples = convert_dataset(df_test)
80
+ test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
81
+ test_evaluator(model, output_path="./")
82
+ ```
83
+
84
+ **Test Result**:
85
+ The performance is measured using Pearson and Spearman correlation:
86
+ - On dev
87
+
88
+
89
+ | Model | Pearson correlation | Spearman correlation | #params |
90
+ | ------------- | ------------- | ------------- |------------- |
91
+ | [Lajavaness/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| **88.63** |**88.46** | 336M|
92
+ | [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large)| 88.2 |88.02 | 336M|
93
+ | [Sahajtomar/french_semanti](https://huggingface.co/Sahajtomar/french_semantic)| 87.44 |87.30 | 336M|
94
+ | [Lajavaness/sentence-flaubert-base](https://huggingface.co/Lajavaness/sentence-flaubert-base)| 87.14 |87.10 | 137M |
95
+ | [GPT-3 (text-davinci-003)](https://platform.openai.com/docs/models) | 85 | NaN|175B |
96
+ | [GPT-(text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.75 | 80.44|NaN |
97
+
98
+
99
+ - On test, Pearson and Spearman correlation are evaluated on many different benchmark datasets:
100
+
101
+
102
+ **Pearson score**
103
+ | Model | [STS-B](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) | [STS12-fr ](https://huggingface.co/datasets/Lajavaness/STS12-fr)| [STS13-fr](https://huggingface.co/datasets/Lajavaness/STS13-fr) | [STS14-fr](https://huggingface.co/datasets/Lajavaness/STS14-fr) | [STS15-fr](https://huggingface.co/datasets/Lajavaness/STS15-fr) | [STS16-fr](https://huggingface.co/datasets/Lajavaness/STS16-fr) | [SICK-fr](https://huggingface.co/datasets/Lajavaness/SICK-fr) | params |
104
+ |------------------------------------------|-------|----------|----------|----------|----------|----------|---------|--------|
105
+ | [Lajavaness/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large) | **86.26** | **87.42** | **89.34** | **88.05** | **88.91** | 77.15 | 83.13 | 336M |
106
+ | [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large) | 85.88 | 87.28 | 89.25 | 87.91 | 88.54 | 76.90 | 83.26 | 336M |
107
+ | [Sahajtomar/french_semantic](https://huggingface.co/Sahajtomar/french_semantic) | 85.80 | 86.05 | 88.50 | 86.57 | 87.49 | 77.85 | 83.27 | 336 |
108
+ | [Lajavaness/sentence-flaubert-base](https://huggingface.co/Lajavaness/sentence-flaubert-base) | 85.39 | 86.64 | 87.24 | 85.68 | 87.99 | 75.78 | 82.84 | 137M |
109
+ | [GPT3 (text-embedding-ada-002)](https://platform.openai.com/docs/models) | 79.03 | 66.16 | 75.48 | 70.69 | 77.88 | 65.18 | - | - |
110
+
111
+
112
+ **Spearman score**
113
+ | Model | [STS-B](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train) | [STS12-fr ](https://huggingface.co/datasets/Lajavaness/STS12-fr)| [STS13-fr](https://huggingface.co/datasets/Lajavaness/STS13-fr) | [STS14-fr](https://huggingface.co/datasets/Lajavaness/STS14-fr) | [STS15-fr](https://huggingface.co/datasets/Lajavaness/STS15-fr) | [STS16-fr](https://huggingface.co/datasets/Lajavaness/STS16-fr) | [SICK-fr](https://huggingface.co/datasets/Lajavaness/SICK-fr) | params |
114
+ |:-------------------------------------|-------:|---------:|---------:|---------:|---------:|---------:|--------:|:-------|
115
+ | [Lajavaness/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large) | **86.14** | **81.22** | 88.61 | **86.28** | **89.01** | 78.65 | **77.71** | 336M |
116
+ | [dangvantuan/sentence-camembert-large](https://huggingface.co/dangvantuan/sentence-camembert-large) | 85.78 | 81.09 | 88.68 | 85.81 | 88.56 | 78.49 | 77.70 | 336M |
117
+ | [Sahajtomar/french_semantic](https://huggingface.co/Sahajtomar/french_semantic) | 85.55 | 77.92 | 87.85 | 83.96 | 87.63 | 79.07 | 77.14 | 137M |
118
+ | [Lajavaness/sentence-flaubert-base](https://huggingface.co/Lajavaness/sentence-flaubert-base) | 85.67 | 79.97 | 86.91 | 84.57 | 88.10 | 77.84 | 77.55 | 336 |
119
+ | [GPT3 (text-embedding-ada-002)](https://platform.openai.com/docs/models) | 77.53 | 64.27 | 76.41 | 69.63 | 78.65 | 75.30 | - | - |
120
+
121
+
122
+
123
+ ## Citation
124
+
125
+
126
+ @article{reimers2019sentence,
127
+ title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
128
+ author={Nils Reimers, Iryna Gurevych},
129
+ journal={https://arxiv.org/abs/1908.10084},
130
+ year={2019}
131
+ }
132
+
133
 
134
+ @article{martin2020camembert,
135
+ title={CamemBERT: a Tasty French Language Mode},
136
+ author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
137
+ journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
138
+ year={2020}
139
+ }