File size: 2,971 Bytes
92058d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: TED_CLM_gpt2_tedlium_additional_head
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# TED_CLM_gpt2_tedlium_additional_head

This model is a fine-tuned version of [Lakoc/gpt2_512h_16l_add_head8](https://huggingface.co/Lakoc/gpt2_512h_16l_add_head8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9139
- Accuracy: 0.5529

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 512
- total_eval_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20000
- num_epochs: 15.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.2945        | 0.62  | 3000  | 2.4760          | 0.4352   |
| 2.0669        | 1.24  | 6000  | 2.2729          | 0.4767   |
| 1.9754        | 1.86  | 9000  | 2.1827          | 0.4974   |
| 1.9292        | 2.49  | 12000 | 2.1086          | 0.5139   |
| 1.8983        | 3.11  | 15000 | 2.0666          | 0.5223   |
| 1.8853        | 3.73  | 18000 | 2.0389          | 0.5278   |
| 1.8708        | 4.35  | 21000 | 2.0216          | 0.5301   |
| 1.8524        | 4.97  | 24000 | 2.0024          | 0.5352   |
| 1.836         | 5.59  | 27000 | 1.9915          | 0.5365   |
| 1.8219        | 6.22  | 30000 | 1.9847          | 0.5410   |
| 1.8134        | 6.84  | 33000 | 1.9670          | 0.5408   |
| 1.8088        | 7.46  | 36000 | 1.9736          | 0.5425   |
| 1.8011        | 8.08  | 39000 | 1.9610          | 0.5426   |
| 1.7901        | 8.7   | 42000 | 1.9519          | 0.5459   |
| 1.7829        | 9.32  | 45000 | 1.9524          | 0.5463   |
| 1.7865        | 9.94  | 48000 | 1.9424          | 0.5479   |
| 1.7775        | 10.57 | 51000 | 1.9421          | 0.5480   |
| 1.7698        | 11.19 | 54000 | 1.9346          | 0.5486   |
| 1.767         | 11.81 | 57000 | 1.9249          | 0.5493   |
| 1.7578        | 12.43 | 60000 | 1.9262          | 0.5500   |
| 1.7613        | 13.05 | 63000 | 1.9185          | 0.5508   |
| 1.7591        | 13.67 | 66000 | 1.9191          | 0.5523   |
| 1.7489        | 14.29 | 69000 | 1.9159          | 0.5522   |
| 1.7506        | 14.92 | 72000 | 1.9139          | 0.5529   |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.13.3