Upload 3 files
Browse files- .gitattributes +1 -0
- handler.py +121 -0
- model_optimized.onnx +3 -0
- onnx-mxbai.mar +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
onnx-mxbai.mar filter=lfs diff=lfs merge=lfs -text
|
handler.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Pipeline
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch
|
4 |
+
from ts.torch_handler.base_handler import BaseHandler
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import transformers
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
logger.info("Transformers version %s", transformers.__version__)
|
11 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
12 |
+
|
13 |
+
def mean_pooling(model_output, attention_mask):
|
14 |
+
token_embeddings = model_output[0]
|
15 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
16 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
17 |
+
|
18 |
+
class SentenceEmbeddingHandler(BaseHandler):
|
19 |
+
def __init__(self):
|
20 |
+
super(SentenceEmbeddingHandler, self).__init__()
|
21 |
+
self._context = None
|
22 |
+
self.initialized = False
|
23 |
+
class SentenceEmbeddingPipeline(Pipeline):
|
24 |
+
def initialize(self, context):
|
25 |
+
"""
|
26 |
+
Initialize function loads the model and the tokenizer
|
27 |
+
|
28 |
+
Args:
|
29 |
+
context (context): It is a JSON Object containing information
|
30 |
+
pertaining to the model artifacts parameters.
|
31 |
+
|
32 |
+
Raises:
|
33 |
+
RuntimeError: Raises the Runtime error when the model or
|
34 |
+
tokenizer is missing
|
35 |
+
"""
|
36 |
+
|
37 |
+
properties = context.system_properties
|
38 |
+
self.manifest = context.manifest
|
39 |
+
model_dir = properties.get("model_dir")
|
40 |
+
|
41 |
+
# use GPU if available
|
42 |
+
self.device = torch.device(
|
43 |
+
"cuda:" + str(properties.get("gpu_id"))
|
44 |
+
if torch.cuda.is_available() and properties.get("gpu_id") is not None
|
45 |
+
else "cpu"
|
46 |
+
)
|
47 |
+
logger.info(f'Using device {self.device}')
|
48 |
+
|
49 |
+
# load the model
|
50 |
+
model_file = self.manifest['model']['modelFile']
|
51 |
+
model_path = os.path.join(model_dir, model_file)
|
52 |
+
|
53 |
+
if os.path.isfile(model_path):
|
54 |
+
# self.model = AutoModel.from_pretrained(model_dir)
|
55 |
+
self.model = ORTModelForFeatureExtraction.from_pretrained(model_dir, file_name="model_optimized.onnx")
|
56 |
+
self.model.to(self.device)
|
57 |
+
|
58 |
+
logger.info(f'Successfully loaded model from {model_file}')
|
59 |
+
else:
|
60 |
+
raise RuntimeError('Missing the model file')
|
61 |
+
|
62 |
+
# load tokenizer
|
63 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
64 |
+
if self.tokenizer is not None:
|
65 |
+
logger.info('Successfully loaded tokenizer')
|
66 |
+
else:
|
67 |
+
raise RuntimeError('Missing tokenizer')
|
68 |
+
|
69 |
+
self.initialized = True
|
70 |
+
def _sanitize_parameters(self, **kwargs):
|
71 |
+
# we don't have any hyperameters to sanitize
|
72 |
+
preprocess_kwargs = {}
|
73 |
+
return preprocess_kwargs, {}, {}
|
74 |
+
|
75 |
+
def preprocess_text(self, inputs):
|
76 |
+
encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt')
|
77 |
+
return encoded_inputs
|
78 |
+
|
79 |
+
def preprocess(self, requests):
|
80 |
+
"""
|
81 |
+
Tokenize the input text using the suitable tokenizer and convert
|
82 |
+
it to tensor
|
83 |
+
|
84 |
+
If token_ids is provided, the json must be of the form
|
85 |
+
{'input_ids': [[101, 102]], 'token_type_ids': [[0, 0]], 'attention_mask': [[1, 1]]}
|
86 |
+
|
87 |
+
Args:
|
88 |
+
requests: A list containing a dictionary, might be in the form
|
89 |
+
of [{'body': json_file}] or [{'data': json_file}] or [{'token_ids': json_file}]
|
90 |
+
Returns:
|
91 |
+
the tensor containing the batch of token vectors.
|
92 |
+
"""
|
93 |
+
|
94 |
+
# unpack the data
|
95 |
+
data = requests[0].get('body')
|
96 |
+
if data is None:
|
97 |
+
data = requests[0].get('data')
|
98 |
+
|
99 |
+
texts = data.get('input')
|
100 |
+
if texts is not None:
|
101 |
+
logger.info('Text provided')
|
102 |
+
return self.preprocess_text(texts)
|
103 |
+
|
104 |
+
encodings = data.get('encodings')
|
105 |
+
if encodings is not None:
|
106 |
+
logger.info('Encodings provided')
|
107 |
+
return transformers.BatchEncoding(data={k: torch.tensor(v) for k, v in encodings.items()})
|
108 |
+
|
109 |
+
raise Exception("unsupported payload")
|
110 |
+
def inference(self, model_inputs):
|
111 |
+
outputs = self.model(**model_inputs)
|
112 |
+
sentence_embeddings = mean_pooling(outputs, model_inputs['attention_mask'])
|
113 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
114 |
+
return sentence_embeddings
|
115 |
+
|
116 |
+
def postprocess(self, outputs):
|
117 |
+
formatted_outputs = []
|
118 |
+
data=[outputs.tolist()]
|
119 |
+
for dat in data:
|
120 |
+
formatted_outputs.append({"status":"success","data":dat})
|
121 |
+
return formatted_outputs
|
model_optimized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c8222c98632a250933d2e1685aa2ba6bd8003cbcf13bf20d91f32b6965974f6
|
3 |
+
size 1336607159
|
onnx-mxbai.mar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:329b7ba82830bf75553d3e3024d9442b2b0a8d8cb81042c2d214e1d139b43099
|
3 |
+
size 592590703
|