Text-to-Image
Diffusers
Safetensors
StableDiffusionPipeline
stable-diffusion
sarang-shrivastava commited on
Commit
026639f
·
1 Parent(s): 4cb8587

Upload files

Browse files
Files changed (2) hide show
  1. handler.py +104 -0
  2. requirements.txt +7 -0
handler.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ # import transformers
3
+ # from transformers import AutoTokenizer
4
+ # import torch
5
+ from datetime import datetime
6
+
7
+ import torch
8
+
9
+ # torch.backends.cuda.matmul.allow_tf32 = True
10
+
11
+ from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
12
+
13
+ class EndpointHandler():
14
+
15
+ def __init__(self, path=""):
16
+
17
+ # Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead
18
+ self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
19
+ self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
20
+ self.pipe = self.pipe.to("cuda")
21
+
22
+ # self.pipe.enable_attention_slicing()
23
+ self.pipe.enable_xformers_memory_efficient_attention()
24
+
25
+ # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
26
+ # self.model.eval()
27
+ # self.model.to(device=device, dtype=self.torch_dtype)
28
+
29
+ # self.generate_kwargs = {
30
+ # 'max_new_tokens': 512,
31
+ # 'temperature': 0.0001,
32
+ # 'top_p': 1.0,
33
+ # 'top_k': 0,
34
+ # 'use_cache': True,
35
+ # 'do_sample': True,
36
+ # 'eos_token_id': self.tokenizer.eos_token_id,
37
+ # 'pad_token_id': self.tokenizer.pad_token_id,
38
+ # "repetition_penalty": 1.1
39
+ # }
40
+
41
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
42
+ """
43
+ data args:
44
+ inputs (:obj: `str` | `PIL.Image` | `np.array`)
45
+ kwargs
46
+ Return:
47
+ A :obj:`list` | `dict`: will be serialized and returned
48
+ """
49
+
50
+ # streamer = TextIteratorStreamer(
51
+ # self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
52
+ # )
53
+
54
+ ## Model Parameters
55
+ # self.generate_kwargs['max_new_tokens'] = data['max_new_tokens'] if 'max_new_tokens' in data else self.generate_kwargs['max_new_tokens']
56
+ # self.generate_kwargs['temperature'] = data['temperature'] if 'temperature' in data else self.generate_kwargs['temperature']
57
+ # self.generate_kwargs['top_p'] = data['top_p'] if 'top_p' in data else self.generate_kwargs['top_p']
58
+ # self.generate_kwargs['top_k'] = data['top_k'] if 'top_k' in data else self.generate_kwargs['top_k']
59
+ # self.generate_kwargs['do_sample'] = data['do_sample'] if 'do_sample' in data else self.generate_kwargs['do_sample']
60
+ # self.generate_kwargs['repetition_penalty'] = data['repetition_penalty'] if 'repetition_penalty' in data else self.generate_kwargs['repetition_penalty']
61
+
62
+
63
+ ## Prepare the inputs
64
+ # inputs = data.pop("inputs",data)
65
+ # input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
66
+ # input_ids = input_ids.to(self.model.device)
67
+
68
+
69
+ # pip install accelerate
70
+
71
+ batch_size = data.pop("batch_size",data)
72
+
73
+ now = datetime.now()
74
+
75
+ with torch.inference_mode():
76
+ prompt = "a photo of an astronaut riding a horse on mars"
77
+ image = pipe([prompt]*batch_size, num_inference_steps=20)
78
+
79
+ # image.save("astronaut_rides_horse.png")
80
+
81
+ current = datetime.now()
82
+
83
+ # encoded_inp = self.tokenizer(inputs, return_tensors='pt', padding=True)
84
+ # for key, value in encoded_inp.items():
85
+ # encoded_inp[key] = value.to('cuda:0')
86
+
87
+ ## Invoke the model
88
+ # with torch.no_grad():
89
+ # gen_tokens = self.model.generate(
90
+ # input_ids=encoded_inp['input_ids'],
91
+ # attention_mask=encoded_inp['attention_mask'],
92
+ # **generate_kwargs,
93
+ # )
94
+
95
+ # ## Decode using tokenizer
96
+ # decoded_gen = self.tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)
97
+
98
+ # with torch.no_grad():
99
+ # output_ids = self.model.generate(input_ids, **self.generate_kwargs)
100
+ # # Slice the output_ids tensor to get only new tokens
101
+ # new_tokens = output_ids[0, len(input_ids[0]) :]
102
+ # output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
103
+
104
+ return [{"batch_size":batch_size, "time_elapsed": str(current-now)}]
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ accelerate
2
+ torch
3
+ transformers
4
+ diffusers
5
+ scipy
6
+ safetensors
7
+ xformers