File size: 1,468 Bytes
e5d88ee 99888a9 81fd16c 69ef721 81fd16c 5432762 81fd16c 5432762 81fd16c f86abe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
license: apache-2.0
datasets:
- wikisql
language:
- en
pipeline_tag: text2text-generation
tags:
- nl2sql
widget:
- text: "question: get people name with age less 25 table: id, name, age"
example_title: "less than"
- text: "question: get people name with age equal 25 table: id, name, age"
example_title: "equal"
---
new version: LarkAI/codet5p-770m_nl2sql_oig
use oig-sql dataset and support more complex sql parse
# How to Use
```python
from transformers import AutoTokenizer, BartForConditionalGeneration
device = torch.device('cuda:0')
tokenizer = AutoTokenizer.from_pretrained("LarkAI/bart_large_nl2sql")
model = BartForConditionalGeneration.from_pretrained("LarkAI/bart_large_nl2sql").to(device)
text = "question: get people name with age less 25 table: id, name, age"
inputs = tokenizer([text], max_length=1024, return_tensors="pt")
output_ids = model.generate(inputs["input_ids"].to(self.device), num_beams=self.beams, max_length=128, min_length=8)
response_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# SELECT name FROM table WHERE age < 25
```
reference: [juierror/flan-t5-text2sql-with-schema](https://huggingface.co/juierror/flan-t5-text2sql-with-schema) - fix this [discussion](https://huggingface.co/juierror/flan-t5-text2sql-with-schema/discussions/5)
# How to Train
Quick start: https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/README.md |