--- license: apache-2.0 datasets: - laion/OIG language: - en pipeline_tag: text2text-generation tags: - nl2sql widget: - text: 'Given the following schema:\ntrack (Track_ID, Name, Location, Seating, Year_Opened)\nrace (Race_ID, Name, Class, Date, Track_ID)\nWrite a SQL query to count the number of tracks.' example_title: 'count' - text: 'Given the following schema:\nmountain (Mountain_ID, Name, Height, Prominence, Range, Country)\nclimber (Climber_ID, Name, Country, Time, Points, Mountain_ID)\nWrite a SQL query to list the countries that have more than one mountain.' example_title: 'having' --- # How to Use ```python import torch from transformers import T5ForConditionalGeneration, AutoTokenizer device = torch.device("cuda:0") tokenizer = AutoTokenizer.from_pretrained("LarkAI/codet5p-770m_nl2sql_oig") model = T5ForConditionalGeneration.from_pretrained("LarkAI/codet5p-770m_nl2sql_oig").to(device) text = "Given the following schema:\ntrack (Track_ID, Name, Location, Seating, Year_Opened)\nrace (Race_ID, Name, Class, Date, Track_ID)\nWrite a SQL query to count the number of tracks." inputs = tokenizer.encode(text, return_tensors="pt").to(device) output_ids = model.generate(inputs, max_length=512) response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) # SELECT COUNT( * ) FROM track ``` # How to Train Dataset: - https://huggingface.co/datasets/laion/OIG#unified_sqlv1jsonl-17000 - https://huggingface.co/datasets/laion/OIG#unified_sqlv2jsonl24000 ```json { "text":": Given the following schema:\nlocation (restaurant_id, house_number, street_name, city_name)\nrestaurant (id, name, food_type, city_name, rating)\ngeographic (city_name, county, region)\nWrite a SQL query to give me some good arabic -s on buchanan in san francisco ?\n: SELECT location.house_number , restaurant.name FROM location , restaurant WHERE location.city_name = \"san francisco\" AND location.street_name = \"buchanan\" AND restaurant.food_type = \"arabic\" AND restaurant.id = location.restaurant_id AND restaurant.rating > 2.5 ;", "metadata":{ "source":"unified_sqlv1" } } ```