Lauther commited on
Commit
e1ebcfc
·
verified ·
1 Parent(s): 98d30d4

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,668 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:3075
8
+ - loss:CoSENTLoss
9
+ base_model: intfloat/multilingual-e5-large-instruct
10
+ widget:
11
+ - source_sentence: last calibrated span
12
+ sentences:
13
+ - 'What is a Calibration Point?
14
+
15
+ A Calibration Point represents a specific data entry in a calibration process,
16
+ comparing an expected reference value to an actual measured value. These points
17
+ are fundamental in ensuring measurement accuracy and identifying deviations.
18
+
19
+
20
+ Key Aspects of Calibration Points:
21
+
22
+ - Calibration Report Association: Each calibration point belongs to a specific
23
+ calibration report, linking it to a broader calibration procedure.
24
+
25
+ - Reference Values: Theoretical or expected values used as a benchmark for measurement
26
+ validation.
27
+
28
+ - Measured Values: The actual recorded values during calibration, reflecting the
29
+ instrument’s response.
30
+
31
+ - Errors: The difference between reference and measured values, indicating possible
32
+ measurement inaccuracies.
33
+
34
+ Calibration points are essential for evaluating instrument performance, ensuring
35
+ compliance with standards, and maintaining measurement reliability.'
36
+ - 'What is Equipment?
37
+
38
+ An Equipment represents a physical device that may be used within a measurement
39
+ system. Equipment can be active or inactive and is classified by type, such as
40
+ transmitters, thermometers, or other measurement-related devices.
41
+
42
+
43
+ Key Aspects of Equipment:
44
+
45
+ - Serial Number: A unique identifier assigned to each equipment unit for tracking
46
+ and reference.
47
+
48
+ - Current State: Indicates whether the equipment is currently in use (ACT) or
49
+ inactive (INA).
50
+
51
+ - Associated Equipment Type: Defines the category of the equipment (e.g., transmitter,
52
+ thermometer), allowing classification and management.
53
+
54
+ Equipment plays a critical role in measurement systems, ensuring accuracy and
55
+ reliability in data collection and processing.'
56
+ - 'What is an Equipment Tag?
57
+
58
+ An Equipment Tag is a unique identifier assigned to equipment that is actively
59
+ installed and in use within a measurement system. It differentiates between equipment
60
+ in general (which may be in storage or inactive) and equipment that is currently
61
+ operational in a system.
62
+
63
+
64
+ Key Aspects of Equipment Tags:
65
+
66
+ - Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
67
+ in operation.
68
+
69
+ - Equipment ID: Links the tag to the corresponding equipment unit.
70
+
71
+ - Belonging Measurement System: Specifies which measurement system the tagged
72
+ equipment is part of.
73
+
74
+ - Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
75
+ aiding in organization and system integration.
76
+
77
+ The Equipment Tag is essential for tracking and managing operational equipment
78
+ within a measurement system, ensuring proper identification, monitoring, and maintenance.'
79
+ - source_sentence: transmitter calibration record
80
+ sentences:
81
+ - 'What are historical report values?
82
+
83
+ These represent the recorded data points within flow computer reports. Unlike
84
+ the report index, which serves as a reference to locate reports, these values
85
+ contain the actual measurements and calculated data stored in the historical records.
86
+
87
+
88
+ Flow computer reports store two types of data values:
89
+
90
+
91
+ - **Hourly data values**: Contain measured or calculated values (e.g., operational
92
+ minutes, alarms set, etc.) recorded on an hourly basis.
93
+
94
+ - **Daily data values**: Contain measured or calculated values (e.g., operational
95
+ minutes, alarms set, etc.) recorded on a daily basis.
96
+
97
+ Each value is directly linked to its respective report index, ensuring traceability
98
+ to the original flow computer record. These values maintain their raw integrity,
99
+ providing a reliable source for analysis and validation.'
100
+ - 'What is a Flow Computer Firmware?
101
+
102
+ A flow computer firmware is a software component that defines the functionality
103
+ and behavior of a flow computer.
104
+
105
+
106
+ 🔹 Key Characteristics:
107
+
108
+
109
+ Each firmware version (e.g., F407, FB107, EMED-010) is linked to a specific flow
110
+ computer model.
111
+
112
+ Firmware versions can have a status indicating whether they are active or inactive.
113
+
114
+ They determine how the flow computer processes measurements, calculations, and
115
+ system operations.
116
+
117
+ 📌 Database Tip: When querying firmware information, ensure the firmware version
118
+ is matched with the correct flow computer type for accurate results.'
119
+ - 'What is an Uncertainty Curve Point?
120
+
121
+ An Uncertainty Curve Point represents a data point used to construct the uncertainty
122
+ curve of a measurement system. These curves help analyze how measurement uncertainty
123
+ behaves under different flow rate conditions, ensuring accuracy and reliability
124
+ in uncertainty assessments.
125
+
126
+
127
+ Key Aspects of an Uncertainty Curve Point:
128
+
129
+ - Uncertainty File ID: Links the point to the specific uncertainty dataset, ensuring
130
+ traceability.
131
+
132
+ Equipment Tag ID: Identifies the equipment associated with the uncertainty measurement,
133
+ crucial for system validation.
134
+
135
+ - Uncertainty Points: Represent uncertainty values recorded at specific conditions,
136
+ forming part of the overall uncertainty curve.
137
+
138
+ - Flow Rate Points: Corresponding flow rate values at which the uncertainty was
139
+ measured, essential for evaluating performance under varying operational conditions.
140
+
141
+ These points are fundamental for generating uncertainty curves, which are used
142
+ in calibration, validation, and compliance assessments to ensure measurement reliability
143
+ in industrial processes.'
144
+ - source_sentence: measurement systems
145
+ sentences:
146
+ - 'What is a Calibration Record?
147
+
148
+ A Calibration Record documents the calibration process of a specific equipment
149
+ tag, ensuring that its measurements remain accurate and reliable. Calibration
150
+ is a critical process in maintaining measurement precision and compliance with
151
+ standards.
152
+
153
+
154
+ Key Aspects of a Calibration Record:
155
+
156
+ - Calibration Date: The exact date when the calibration was performed, crucial
157
+ for tracking maintenance schedules.
158
+
159
+ - Certification Number: A unique identifier for the calibration certificate, providing
160
+ traceability and verification of compliance.
161
+
162
+ - Range Values: The minimum and maximum measurement values covered during the
163
+ calibration process.
164
+
165
+ - Calibration Status: Indicates whether the calibration was approved or saved
166
+ for further review.
167
+
168
+ - Associated Units: Specifies the measurement units used in calibration (e.g.,
169
+ °C, psi).
170
+
171
+ - Associated Equipment Tag ID: Links the calibration record to a specific equipment
172
+ tag, ensuring traceability of measurement instruments.
173
+
174
+ Calibration records play a fundamental role in quality assurance, helping maintain
175
+ measurement integrity and regulatory compliance.'
176
+ - 'What is a flow computer?
177
+
178
+ A flow computer is a device used in measurement engineering. It collects analog
179
+ and digital data from flow meters and other sensors.
180
+
181
+
182
+ Key features of a flow computer:
183
+
184
+ - It has a unique name, firmware version, and manufacturer information.
185
+
186
+ - It is designed to record and process data such as temperature, pressure, and
187
+ fluid volume (for gases or oils).'
188
+ - 'What is a Measured Magnitude Value?
189
+
190
+ A Measured Magnitude Value represents a recorded physical measurement of a variable
191
+ within a monitored fluid. These values are essential for tracking system performance,
192
+ analyzing trends, and ensuring accurate monitoring of fluid properties.
193
+
194
+
195
+ Key Aspects of a Measured Magnitude Value:
196
+
197
+ - Measurement Date: The timestamp indicating when the measurement was recorded.
198
+
199
+ - Measured Value: The actual numeric result of the recorded physical magnitude.
200
+
201
+ - Measurement System Association: Links the measured value to a specific measurement
202
+ system responsible for capturing the data.
203
+
204
+ - Variable Association: Identifies the specific variable (e.g., temperature, pressure,
205
+ flow rate) corresponding to the recorded value.
206
+
207
+ Measured magnitude values are crucial for real-time monitoring, historical analysis,
208
+ and calibration processes within measurement systems.'
209
+ - source_sentence: measurement system tag
210
+ sentences:
211
+ - 'What is a Meter Stream?
212
+
213
+ A Meter Stream represents a measurement system configured within a flow computer.
214
+ It serves as the interface between the physical measurement system and the computational
215
+ processes that record and analyze flow data.
216
+
217
+
218
+ Key Aspects of a Meter Stream:
219
+
220
+ - Status: Indicates whether the meter stream is active or inactive.
221
+
222
+ - Measurement System Association: Links the meter stream to a specific measurement
223
+ system, ensuring that the data collected corresponds to a defined physical setup.
224
+
225
+ - Flow Computer Association: Identifies the flow computer responsible for managing
226
+ and recording the measurement system''s data.
227
+
228
+ Why is a Meter Stream Important?
229
+
230
+ A **meter stream** is a critical component in flow measurement, as it ensures
231
+ that the measurement system is correctly integrated into the flow computer for
232
+ accurate monitoring and reporting. Since each flow computer can handle multiple
233
+ meter streams, proper configuration is essential for maintaining data integrity
234
+ and traceability.'
235
+ - 'What is an Equipment Tag?
236
+
237
+ An Equipment Tag is a unique identifier assigned to equipment that is actively
238
+ installed and in use within a measurement system. It differentiates between equipment
239
+ in general (which may be in storage or inactive) and equipment that is currently
240
+ operational in a system.
241
+
242
+
243
+ Key Aspects of Equipment Tags:
244
+
245
+ - Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
246
+ in operation.
247
+
248
+ - Equipment ID: Links the tag to the corresponding equipment unit.
249
+
250
+ - Belonging Measurement System: Specifies which measurement system the tagged
251
+ equipment is part of.
252
+
253
+ - Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
254
+ aiding in organization and system integration.
255
+
256
+ The Equipment Tag is essential for tracking and managing operational equipment
257
+ within a measurement system, ensuring proper identification, monitoring, and maintenance.'
258
+ - 'What is a measurement system?
259
+
260
+ **Measurement systems** are essential components in industrial measurement and
261
+ processing. They are identified by a unique **Tag** and are associated with a
262
+ specific **installation** and **fluid type**. These systems utilize different
263
+ **measurement technologies**, including **differential (DIF)** and **linear (LIN)**,
264
+ depending on the application. Measurement systems can be classified based on their
265
+ **application type**, such as **fiscal** or **custody transfer**. '
266
+ - source_sentence: uncertainty points
267
+ sentences:
268
+ - 'What is a Calibration Point?
269
+
270
+ A Calibration Point represents a specific data entry in a calibration process,
271
+ comparing an expected reference value to an actual measured value. These points
272
+ are fundamental in ensuring measurement accuracy and identifying deviations.
273
+
274
+
275
+ Key Aspects of Calibration Points:
276
+
277
+ - Calibration Report Association: Each calibration point belongs to a specific
278
+ calibration report, linking it to a broader calibration procedure.
279
+
280
+ - Reference Values: Theoretical or expected values used as a benchmark for measurement
281
+ validation.
282
+
283
+ - Measured Values: The actual recorded values during calibration, reflecting the
284
+ instrument’s response.
285
+
286
+ - Errors: The difference between reference and measured values, indicating possible
287
+ measurement inaccuracies.
288
+
289
+ Calibration points are essential for evaluating instrument performance, ensuring
290
+ compliance with standards, and maintaining measurement reliability.'
291
+ - 'What is a Meter Stream?
292
+
293
+ A Meter Stream represents a measurement system configured within a flow computer.
294
+ It serves as the interface between the physical measurement system and the computational
295
+ processes that record and analyze flow data.
296
+
297
+
298
+ Key Aspects of a Meter Stream:
299
+
300
+ - Status: Indicates whether the meter stream is active or inactive.
301
+
302
+ - Measurement System Association: Links the meter stream to a specific measurement
303
+ system, ensuring that the data collected corresponds to a defined physical setup.
304
+
305
+ - Flow Computer Association: Identifies the flow computer responsible for managing
306
+ and recording the measurement system''s data.
307
+
308
+ Why is a Meter Stream Important?
309
+
310
+ A **meter stream** is a critical component in flow measurement, as it ensures
311
+ that the measurement system is correctly integrated into the flow computer for
312
+ accurate monitoring and reporting. Since each flow computer can handle multiple
313
+ meter streams, proper configuration is essential for maintaining data integrity
314
+ and traceability.'
315
+ - 'What is a Fluid?
316
+
317
+ A Fluid is the substance measured within a measurement system. It can be a gas
318
+ or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification
319
+ of fluids is essential for ensuring measurement accuracy, regulatory compliance,
320
+ and operational efficiency. By identifying fluids correctly, the system applies
321
+ the appropriate measurement techniques, processing methods, and reporting standards.'
322
+ datasets:
323
+ - Lauther/measuring-embeddings-v4
324
+ pipeline_tag: sentence-similarity
325
+ library_name: sentence-transformers
326
+ ---
327
+
328
+ # SentenceTransformer based on intfloat/multilingual-e5-large-instruct
329
+
330
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
331
+
332
+ ## Model Details
333
+
334
+ ### Model Description
335
+ - **Model Type:** Sentence Transformer
336
+ - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision 84344a23ee1820ac951bc365f1e91d094a911763 -->
337
+ - **Maximum Sequence Length:** 512 tokens
338
+ - **Output Dimensionality:** 1024 dimensions
339
+ - **Similarity Function:** Cosine Similarity
340
+ - **Training Dataset:**
341
+ - [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4)
342
+ <!-- - **Language:** Unknown -->
343
+ <!-- - **License:** Unknown -->
344
+
345
+ ### Model Sources
346
+
347
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
348
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
349
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
350
+
351
+ ### Full Model Architecture
352
+
353
+ ```
354
+ SentenceTransformer(
355
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
356
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
357
+ (2): Normalize()
358
+ )
359
+ ```
360
+
361
+ ## Usage
362
+
363
+ ### Direct Usage (Sentence Transformers)
364
+
365
+ First install the Sentence Transformers library:
366
+
367
+ ```bash
368
+ pip install -U sentence-transformers
369
+ ```
370
+
371
+ Then you can load this model and run inference.
372
+ ```python
373
+ from sentence_transformers import SentenceTransformer
374
+
375
+ # Download from the 🤗 Hub
376
+ model = SentenceTransformer("Lauther/measuring-embeddings-v4.1")
377
+ # Run inference
378
+ sentences = [
379
+ 'uncertainty points',
380
+ 'What is a Fluid?\nA Fluid is the substance measured within a measurement system. It can be a gas or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification of fluids is essential for ensuring measurement accuracy, regulatory compliance, and operational efficiency. By identifying fluids correctly, the system applies the appropriate measurement techniques, processing methods, and reporting standards.',
381
+ 'What is a Calibration Point?\nA Calibration Point represents a specific data entry in a calibration process, comparing an expected reference value to an actual measured value. These points are fundamental in ensuring measurement accuracy and identifying deviations.\n\nKey Aspects of Calibration Points:\n- Calibration Report Association: Each calibration point belongs to a specific calibration report, linking it to a broader calibration procedure.\n- Reference Values: Theoretical or expected values used as a benchmark for measurement validation.\n- Measured Values: The actual recorded values during calibration, reflecting the instrument’s response.\n- Errors: The difference between reference and measured values, indicating possible measurement inaccuracies.\nCalibration points are essential for evaluating instrument performance, ensuring compliance with standards, and maintaining measurement reliability.',
382
+ ]
383
+ embeddings = model.encode(sentences)
384
+ print(embeddings.shape)
385
+ # [3, 1024]
386
+
387
+ # Get the similarity scores for the embeddings
388
+ similarities = model.similarity(embeddings, embeddings)
389
+ print(similarities.shape)
390
+ # [3, 3]
391
+ ```
392
+
393
+ <!--
394
+ ### Direct Usage (Transformers)
395
+
396
+ <details><summary>Click to see the direct usage in Transformers</summary>
397
+
398
+ </details>
399
+ -->
400
+
401
+ <!--
402
+ ### Downstream Usage (Sentence Transformers)
403
+
404
+ You can finetune this model on your own dataset.
405
+
406
+ <details><summary>Click to expand</summary>
407
+
408
+ </details>
409
+ -->
410
+
411
+ <!--
412
+ ### Out-of-Scope Use
413
+
414
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
415
+ -->
416
+
417
+ <!--
418
+ ## Bias, Risks and Limitations
419
+
420
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
421
+ -->
422
+
423
+ <!--
424
+ ### Recommendations
425
+
426
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
427
+ -->
428
+
429
+ ## Training Details
430
+
431
+ ### Training Dataset
432
+
433
+ #### measuring-embeddings-v4
434
+
435
+ * Dataset: [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) at [1e3ca2c](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4/tree/1e3ca2c224ad58d1cc57b797997231e22154e471)
436
+ * Size: 3,075 training samples
437
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
438
+ * Approximate statistics based on the first 1000 samples:
439
+ | | sentence1 | sentence2 | score |
440
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------|
441
+ | type | string | string | float |
442
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.55 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 80 tokens</li><li>mean: 180.22 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 0.07</li><li>mean: 0.21</li><li>max: 0.95</li></ul> |
443
+ * Samples:
444
+ | sentence1 | sentence2 | score |
445
+ |:--------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
446
+ | <code>last calibrated span</code> | <code>What are historical report values?<br>These represent the recorded data points within flow computer reports. Unlike the report index, which serves as a reference to locate reports, these values contain the actual measurements and calculated data stored in the historical records.<br><br>Flow computer reports store two types of data values:<br><br>- **Hourly data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on an hourly basis.<br>- **Daily data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on a daily basis.<br>Each value is directly linked to its respective report index, ensuring traceability to the original flow computer record. These values maintain their raw integrity, providing a reliable source for analysis and validation.</code> | <code>0.1</code> |
447
+ | <code>flow computer configuration</code> | <code>What is a Measurement Type?<br>Measurement types define the classification of measurements used within a system based on their purpose and regulatory requirements. These types include **fiscal**, **appropriation**, **operational**, and **custody** measurements. <br><br>- **Fiscal measurements** are used for tax and regulatory reporting, ensuring accurate financial transactions based on measured quantities. <br>- **Appropriation measurements** track resource allocation and ownership distribution among stakeholders. <br>- **Operational measurements** support real-time monitoring and process optimization within industrial operations. <br>- **Custody measurements** are essential for legal and contractual transactions, ensuring precise handover of fluids between parties. <br><br>These classifications play a crucial role in compliance, financial accuracy, and operational efficiency across industries such as oil and gas, water management, and energy distribution. </code> | <code>0.1</code> |
448
+ | <code>uncertainty certificate number</code> | <code>What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.</code> | <code>0.1</code> |
449
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
450
+ ```json
451
+ {
452
+ "scale": 20.0,
453
+ "similarity_fct": "pairwise_cos_sim"
454
+ }
455
+ ```
456
+
457
+ ### Evaluation Dataset
458
+
459
+ #### measuring-embeddings-v4
460
+
461
+ * Dataset: [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) at [1e3ca2c](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4/tree/1e3ca2c224ad58d1cc57b797997231e22154e471)
462
+ * Size: 659 evaluation samples
463
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
464
+ * Approximate statistics based on the first 659 samples:
465
+ | | sentence1 | sentence2 | score |
466
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
467
+ | type | string | string | float |
468
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.63 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 80 tokens</li><li>mean: 186.36 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 0.07</li><li>mean: 0.2</li><li>max: 0.9</li></ul> |
469
+ * Samples:
470
+ | sentence1 | sentence2 | score |
471
+ |:-----------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
472
+ | <code>measurement system details</code> | <code>What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.</code> | <code>0.15</code> |
473
+ | <code>measurement system tag EMED-3102-02-010</code> | <code>What is a report index or historic index?<br>Indexes represent the recorded reports generated by flow computers, classified into two types: <br>- **Hourly reports Index**: Store data for hourly events.<br>- **Daily reports Index**: Strore data for daily events.<br><br>These reports, also referred to as historical data or flow computer historical records, contain raw, first-hand measurements directly collected from the flow computer. The data has not been processed or used in any calculations, preserving its original state for analysis or validation.<br><br>The index is essential for locating specific values within the report.</code> | <code>0.24</code> |
474
+ | <code>static pressure</code> | <code>What is a Meter Stream?<br>A Meter Stream represents a measurement system configured within a flow computer. It serves as the interface between the physical measurement system and the computational processes that record and analyze flow data.<br><br>Key Aspects of a Meter Stream:<br>- Status: Indicates whether the meter stream is active or inactive.<br>- Measurement System Association: Links the meter stream to a specific measurement system, ensuring that the data collected corresponds to a defined physical setup.<br>- Flow Computer Association: Identifies the flow computer responsible for managing and recording the measurement system's data.<br>Why is a Meter Stream Important?<br>A **meter stream** is a critical component in flow measurement, as it ensures that the measurement system is correctly integrated into the flow computer for accurate monitoring and reporting. Since each flow computer can handle multiple meter streams, proper configuration is essential for maintaining data integrity and traceability.</code> | <code>0.1</code> |
475
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
476
+ ```json
477
+ {
478
+ "scale": 20.0,
479
+ "similarity_fct": "pairwise_cos_sim"
480
+ }
481
+ ```
482
+
483
+ ### Training Hyperparameters
484
+ #### Non-Default Hyperparameters
485
+
486
+ - `eval_strategy`: steps
487
+ - `per_device_train_batch_size`: 4
488
+ - `per_device_eval_batch_size`: 4
489
+ - `gradient_accumulation_steps`: 4
490
+ - `learning_rate`: 2e-05
491
+ - `num_train_epochs`: 5
492
+ - `warmup_ratio`: 0.1
493
+
494
+ #### All Hyperparameters
495
+ <details><summary>Click to expand</summary>
496
+
497
+ - `overwrite_output_dir`: False
498
+ - `do_predict`: False
499
+ - `eval_strategy`: steps
500
+ - `prediction_loss_only`: True
501
+ - `per_device_train_batch_size`: 4
502
+ - `per_device_eval_batch_size`: 4
503
+ - `per_gpu_train_batch_size`: None
504
+ - `per_gpu_eval_batch_size`: None
505
+ - `gradient_accumulation_steps`: 4
506
+ - `eval_accumulation_steps`: None
507
+ - `torch_empty_cache_steps`: None
508
+ - `learning_rate`: 2e-05
509
+ - `weight_decay`: 0.0
510
+ - `adam_beta1`: 0.9
511
+ - `adam_beta2`: 0.999
512
+ - `adam_epsilon`: 1e-08
513
+ - `max_grad_norm`: 1.0
514
+ - `num_train_epochs`: 5
515
+ - `max_steps`: -1
516
+ - `lr_scheduler_type`: linear
517
+ - `lr_scheduler_kwargs`: {}
518
+ - `warmup_ratio`: 0.1
519
+ - `warmup_steps`: 0
520
+ - `log_level`: passive
521
+ - `log_level_replica`: warning
522
+ - `log_on_each_node`: True
523
+ - `logging_nan_inf_filter`: True
524
+ - `save_safetensors`: True
525
+ - `save_on_each_node`: False
526
+ - `save_only_model`: False
527
+ - `restore_callback_states_from_checkpoint`: False
528
+ - `no_cuda`: False
529
+ - `use_cpu`: False
530
+ - `use_mps_device`: False
531
+ - `seed`: 42
532
+ - `data_seed`: None
533
+ - `jit_mode_eval`: False
534
+ - `use_ipex`: False
535
+ - `bf16`: False
536
+ - `fp16`: False
537
+ - `fp16_opt_level`: O1
538
+ - `half_precision_backend`: auto
539
+ - `bf16_full_eval`: False
540
+ - `fp16_full_eval`: False
541
+ - `tf32`: None
542
+ - `local_rank`: 0
543
+ - `ddp_backend`: None
544
+ - `tpu_num_cores`: None
545
+ - `tpu_metrics_debug`: False
546
+ - `debug`: []
547
+ - `dataloader_drop_last`: False
548
+ - `dataloader_num_workers`: 0
549
+ - `dataloader_prefetch_factor`: None
550
+ - `past_index`: -1
551
+ - `disable_tqdm`: False
552
+ - `remove_unused_columns`: True
553
+ - `label_names`: None
554
+ - `load_best_model_at_end`: False
555
+ - `ignore_data_skip`: False
556
+ - `fsdp`: []
557
+ - `fsdp_min_num_params`: 0
558
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
559
+ - `fsdp_transformer_layer_cls_to_wrap`: None
560
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
561
+ - `deepspeed`: None
562
+ - `label_smoothing_factor`: 0.0
563
+ - `optim`: adamw_torch
564
+ - `optim_args`: None
565
+ - `adafactor`: False
566
+ - `group_by_length`: False
567
+ - `length_column_name`: length
568
+ - `ddp_find_unused_parameters`: None
569
+ - `ddp_bucket_cap_mb`: None
570
+ - `ddp_broadcast_buffers`: False
571
+ - `dataloader_pin_memory`: True
572
+ - `dataloader_persistent_workers`: False
573
+ - `skip_memory_metrics`: True
574
+ - `use_legacy_prediction_loop`: False
575
+ - `push_to_hub`: False
576
+ - `resume_from_checkpoint`: None
577
+ - `hub_model_id`: None
578
+ - `hub_strategy`: every_save
579
+ - `hub_private_repo`: None
580
+ - `hub_always_push`: False
581
+ - `gradient_checkpointing`: False
582
+ - `gradient_checkpointing_kwargs`: None
583
+ - `include_inputs_for_metrics`: False
584
+ - `include_for_metrics`: []
585
+ - `eval_do_concat_batches`: True
586
+ - `fp16_backend`: auto
587
+ - `push_to_hub_model_id`: None
588
+ - `push_to_hub_organization`: None
589
+ - `mp_parameters`:
590
+ - `auto_find_batch_size`: False
591
+ - `full_determinism`: False
592
+ - `torchdynamo`: None
593
+ - `ray_scope`: last
594
+ - `ddp_timeout`: 1800
595
+ - `torch_compile`: False
596
+ - `torch_compile_backend`: None
597
+ - `torch_compile_mode`: None
598
+ - `dispatch_batches`: None
599
+ - `split_batches`: None
600
+ - `include_tokens_per_second`: False
601
+ - `include_num_input_tokens_seen`: False
602
+ - `neftune_noise_alpha`: None
603
+ - `optim_target_modules`: None
604
+ - `batch_eval_metrics`: False
605
+ - `eval_on_start`: False
606
+ - `use_liger_kernel`: False
607
+ - `eval_use_gather_object`: False
608
+ - `average_tokens_across_devices`: False
609
+ - `prompts`: None
610
+ - `batch_sampler`: batch_sampler
611
+ - `multi_dataset_batch_sampler`: proportional
612
+
613
+ </details>
614
+
615
+ ### Framework Versions
616
+ - Python: 3.11.0
617
+ - Sentence Transformers: 3.4.1
618
+ - Transformers: 4.49.0
619
+ - PyTorch: 2.6.0+cu124
620
+ - Accelerate: 1.4.0
621
+ - Datasets: 3.3.2
622
+ - Tokenizers: 0.21.0
623
+
624
+ ## Citation
625
+
626
+ ### BibTeX
627
+
628
+ #### Sentence Transformers
629
+ ```bibtex
630
+ @inproceedings{reimers-2019-sentence-bert,
631
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
632
+ author = "Reimers, Nils and Gurevych, Iryna",
633
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
634
+ month = "11",
635
+ year = "2019",
636
+ publisher = "Association for Computational Linguistics",
637
+ url = "https://arxiv.org/abs/1908.10084",
638
+ }
639
+ ```
640
+
641
+ #### CoSENTLoss
642
+ ```bibtex
643
+ @online{kexuefm-8847,
644
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
645
+ author={Su Jianlin},
646
+ year={2022},
647
+ month={Jan},
648
+ url={https://kexue.fm/archives/8847},
649
+ }
650
+ ```
651
+
652
+ <!--
653
+ ## Glossary
654
+
655
+ *Clearly define terms in order to be accessible across audiences.*
656
+ -->
657
+
658
+ <!--
659
+ ## Model Card Authors
660
+
661
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
662
+ -->
663
+
664
+ <!--
665
+ ## Model Card Contact
666
+
667
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
668
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large-instruct",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.49.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b26109ee7ce703f9347962c51a54cc7e772fe8af7e2e437729e0a29efec56bf9
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }