File size: 45,596 Bytes
216b4c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3075
- loss:CoSENTLoss
base_model: intfloat/multilingual-e5-large-instruct
widget:
- source_sentence: last calibrated span
sentences:
- 'What is a Calibration Point?
A Calibration Point represents a specific data entry in a calibration process,
comparing an expected reference value to an actual measured value. These points
are fundamental in ensuring measurement accuracy and identifying deviations.
Key Aspects of Calibration Points:
- Calibration Report Association: Each calibration point belongs to a specific
calibration report, linking it to a broader calibration procedure.
- Reference Values: Theoretical or expected values used as a benchmark for measurement
validation.
- Measured Values: The actual recorded values during calibration, reflecting the
instrument’s response.
- Errors: The difference between reference and measured values, indicating possible
measurement inaccuracies.
Calibration points are essential for evaluating instrument performance, ensuring
compliance with standards, and maintaining measurement reliability.'
- 'What is Equipment?
An Equipment represents a physical device that may be used within a measurement
system. Equipment can be active or inactive and is classified by type, such as
transmitters, thermometers, or other measurement-related devices.
Key Aspects of Equipment:
- Serial Number: A unique identifier assigned to each equipment unit for tracking
and reference.
- Current State: Indicates whether the equipment is currently in use (ACT) or
inactive (INA).
- Associated Equipment Type: Defines the category of the equipment (e.g., transmitter,
thermometer), allowing classification and management.
Equipment plays a critical role in measurement systems, ensuring accuracy and
reliability in data collection and processing.'
- 'What is an Equipment Tag?
An Equipment Tag is a unique identifier assigned to equipment that is actively
installed and in use within a measurement system. It differentiates between equipment
in general (which may be in storage or inactive) and equipment that is currently
operational in a system.
Key Aspects of Equipment Tags:
- Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
in operation.
- Equipment ID: Links the tag to the corresponding equipment unit.
- Belonging Measurement System: Specifies which measurement system the tagged
equipment is part of.
- Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
aiding in organization and system integration.
The Equipment Tag is essential for tracking and managing operational equipment
within a measurement system, ensuring proper identification, monitoring, and maintenance.'
- source_sentence: transmitter calibration record
sentences:
- 'What are historical report values?
These represent the recorded data points within flow computer reports. Unlike
the report index, which serves as a reference to locate reports, these values
contain the actual measurements and calculated data stored in the historical records.
Flow computer reports store two types of data values:
- **Hourly data values**: Contain measured or calculated values (e.g., operational
minutes, alarms set, etc.) recorded on an hourly basis.
- **Daily data values**: Contain measured or calculated values (e.g., operational
minutes, alarms set, etc.) recorded on a daily basis.
Each value is directly linked to its respective report index, ensuring traceability
to the original flow computer record. These values maintain their raw integrity,
providing a reliable source for analysis and validation.'
- 'What is a Flow Computer Firmware?
A flow computer firmware is a software component that defines the functionality
and behavior of a flow computer.
🔹 Key Characteristics:
Each firmware version (e.g., F407, FB107, EMED-010) is linked to a specific flow
computer model.
Firmware versions can have a status indicating whether they are active or inactive.
They determine how the flow computer processes measurements, calculations, and
system operations.
📌 Database Tip: When querying firmware information, ensure the firmware version
is matched with the correct flow computer type for accurate results.'
- 'What is an Uncertainty Curve Point?
An Uncertainty Curve Point represents a data point used to construct the uncertainty
curve of a measurement system. These curves help analyze how measurement uncertainty
behaves under different flow rate conditions, ensuring accuracy and reliability
in uncertainty assessments.
Key Aspects of an Uncertainty Curve Point:
- Uncertainty File ID: Links the point to the specific uncertainty dataset, ensuring
traceability.
Equipment Tag ID: Identifies the equipment associated with the uncertainty measurement,
crucial for system validation.
- Uncertainty Points: Represent uncertainty values recorded at specific conditions,
forming part of the overall uncertainty curve.
- Flow Rate Points: Corresponding flow rate values at which the uncertainty was
measured, essential for evaluating performance under varying operational conditions.
These points are fundamental for generating uncertainty curves, which are used
in calibration, validation, and compliance assessments to ensure measurement reliability
in industrial processes.'
- source_sentence: measurement systems
sentences:
- 'What is a Calibration Record?
A Calibration Record documents the calibration process of a specific equipment
tag, ensuring that its measurements remain accurate and reliable. Calibration
is a critical process in maintaining measurement precision and compliance with
standards.
Key Aspects of a Calibration Record:
- Calibration Date: The exact date when the calibration was performed, crucial
for tracking maintenance schedules.
- Certification Number: A unique identifier for the calibration certificate, providing
traceability and verification of compliance.
- Range Values: The minimum and maximum measurement values covered during the
calibration process.
- Calibration Status: Indicates whether the calibration was approved or saved
for further review.
- Associated Units: Specifies the measurement units used in calibration (e.g.,
°C, psi).
- Associated Equipment Tag ID: Links the calibration record to a specific equipment
tag, ensuring traceability of measurement instruments.
Calibration records play a fundamental role in quality assurance, helping maintain
measurement integrity and regulatory compliance.'
- 'What is a flow computer?
A flow computer is a device used in measurement engineering. It collects analog
and digital data from flow meters and other sensors.
Key features of a flow computer:
- It has a unique name, firmware version, and manufacturer information.
- It is designed to record and process data such as temperature, pressure, and
fluid volume (for gases or oils).'
- 'What is a Measured Magnitude Value?
A Measured Magnitude Value represents a recorded physical measurement of a variable
within a monitored fluid. These values are essential for tracking system performance,
analyzing trends, and ensuring accurate monitoring of fluid properties.
Key Aspects of a Measured Magnitude Value:
- Measurement Date: The timestamp indicating when the measurement was recorded.
- Measured Value: The actual numeric result of the recorded physical magnitude.
- Measurement System Association: Links the measured value to a specific measurement
system responsible for capturing the data.
- Variable Association: Identifies the specific variable (e.g., temperature, pressure,
flow rate) corresponding to the recorded value.
Measured magnitude values are crucial for real-time monitoring, historical analysis,
and calibration processes within measurement systems.'
- source_sentence: measurement system tag
sentences:
- 'What is a Meter Stream?
A Meter Stream represents a measurement system configured within a flow computer.
It serves as the interface between the physical measurement system and the computational
processes that record and analyze flow data.
Key Aspects of a Meter Stream:
- Status: Indicates whether the meter stream is active or inactive.
- Measurement System Association: Links the meter stream to a specific measurement
system, ensuring that the data collected corresponds to a defined physical setup.
- Flow Computer Association: Identifies the flow computer responsible for managing
and recording the measurement system''s data.
Why is a Meter Stream Important?
A **meter stream** is a critical component in flow measurement, as it ensures
that the measurement system is correctly integrated into the flow computer for
accurate monitoring and reporting. Since each flow computer can handle multiple
meter streams, proper configuration is essential for maintaining data integrity
and traceability.'
- 'What is an Equipment Tag?
An Equipment Tag is a unique identifier assigned to equipment that is actively
installed and in use within a measurement system. It differentiates between equipment
in general (which may be in storage or inactive) and equipment that is currently
operational in a system.
Key Aspects of Equipment Tags:
- Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
in operation.
- Equipment ID: Links the tag to the corresponding equipment unit.
- Belonging Measurement System: Specifies which measurement system the tagged
equipment is part of.
- Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
aiding in organization and system integration.
The Equipment Tag is essential for tracking and managing operational equipment
within a measurement system, ensuring proper identification, monitoring, and maintenance.'
- 'What is a measurement system?
**Measurement systems** are essential components in industrial measurement and
processing. They are identified by a unique **Tag** and are associated with a
specific **installation** and **fluid type**. These systems utilize different
**measurement technologies**, including **differential (DIF)** and **linear (LIN)**,
depending on the application. Measurement systems can be classified based on their
**application type**, such as **fiscal** or **custody transfer**. '
- source_sentence: uncertainty points
sentences:
- 'What is a Calibration Point?
A Calibration Point represents a specific data entry in a calibration process,
comparing an expected reference value to an actual measured value. These points
are fundamental in ensuring measurement accuracy and identifying deviations.
Key Aspects of Calibration Points:
- Calibration Report Association: Each calibration point belongs to a specific
calibration report, linking it to a broader calibration procedure.
- Reference Values: Theoretical or expected values used as a benchmark for measurement
validation.
- Measured Values: The actual recorded values during calibration, reflecting the
instrument’s response.
- Errors: The difference between reference and measured values, indicating possible
measurement inaccuracies.
Calibration points are essential for evaluating instrument performance, ensuring
compliance with standards, and maintaining measurement reliability.'
- 'What is a Meter Stream?
A Meter Stream represents a measurement system configured within a flow computer.
It serves as the interface between the physical measurement system and the computational
processes that record and analyze flow data.
Key Aspects of a Meter Stream:
- Status: Indicates whether the meter stream is active or inactive.
- Measurement System Association: Links the meter stream to a specific measurement
system, ensuring that the data collected corresponds to a defined physical setup.
- Flow Computer Association: Identifies the flow computer responsible for managing
and recording the measurement system''s data.
Why is a Meter Stream Important?
A **meter stream** is a critical component in flow measurement, as it ensures
that the measurement system is correctly integrated into the flow computer for
accurate monitoring and reporting. Since each flow computer can handle multiple
meter streams, proper configuration is essential for maintaining data integrity
and traceability.'
- 'What is a Fluid?
A Fluid is the substance measured within a measurement system. It can be a gas
or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification
of fluids is essential for ensuring measurement accuracy, regulatory compliance,
and operational efficiency. By identifying fluids correctly, the system applies
the appropriate measurement techniques, processing methods, and reporting standards.'
datasets:
- Lauther/measuring-embeddings-v4
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on intfloat/multilingual-e5-large-instruct
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision 84344a23ee1820ac951bc365f1e91d094a911763 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Lauther/measuring-embeddings-v4.2")
# Run inference
sentences = [
'uncertainty points',
'What is a Fluid?\nA Fluid is the substance measured within a measurement system. It can be a gas or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification of fluids is essential for ensuring measurement accuracy, regulatory compliance, and operational efficiency. By identifying fluids correctly, the system applies the appropriate measurement techniques, processing methods, and reporting standards.',
'What is a Calibration Point?\nA Calibration Point represents a specific data entry in a calibration process, comparing an expected reference value to an actual measured value. These points are fundamental in ensuring measurement accuracy and identifying deviations.\n\nKey Aspects of Calibration Points:\n- Calibration Report Association: Each calibration point belongs to a specific calibration report, linking it to a broader calibration procedure.\n- Reference Values: Theoretical or expected values used as a benchmark for measurement validation.\n- Measured Values: The actual recorded values during calibration, reflecting the instrument’s response.\n- Errors: The difference between reference and measured values, indicating possible measurement inaccuracies.\nCalibration points are essential for evaluating instrument performance, ensuring compliance with standards, and maintaining measurement reliability.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### measuring-embeddings-v4
* Dataset: [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) at [1e3ca2c](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4/tree/1e3ca2c224ad58d1cc57b797997231e22154e471)
* Size: 3,075 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 3 tokens</li><li>mean: 7.55 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 80 tokens</li><li>mean: 180.22 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 0.07</li><li>mean: 0.21</li><li>max: 0.95</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:--------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>last calibrated span</code> | <code>What are historical report values?<br>These represent the recorded data points within flow computer reports. Unlike the report index, which serves as a reference to locate reports, these values contain the actual measurements and calculated data stored in the historical records.<br><br>Flow computer reports store two types of data values:<br><br>- **Hourly data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on an hourly basis.<br>- **Daily data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on a daily basis.<br>Each value is directly linked to its respective report index, ensuring traceability to the original flow computer record. These values maintain their raw integrity, providing a reliable source for analysis and validation.</code> | <code>0.1</code> |
| <code>flow computer configuration</code> | <code>What is a Measurement Type?<br>Measurement types define the classification of measurements used within a system based on their purpose and regulatory requirements. These types include **fiscal**, **appropriation**, **operational**, and **custody** measurements. <br><br>- **Fiscal measurements** are used for tax and regulatory reporting, ensuring accurate financial transactions based on measured quantities. <br>- **Appropriation measurements** track resource allocation and ownership distribution among stakeholders. <br>- **Operational measurements** support real-time monitoring and process optimization within industrial operations. <br>- **Custody measurements** are essential for legal and contractual transactions, ensuring precise handover of fluids between parties. <br><br>These classifications play a crucial role in compliance, financial accuracy, and operational efficiency across industries such as oil and gas, water management, and energy distribution. </code> | <code>0.1</code> |
| <code>uncertainty certificate number</code> | <code>What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.</code> | <code>0.1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### measuring-embeddings-v4
* Dataset: [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) at [1e3ca2c](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4/tree/1e3ca2c224ad58d1cc57b797997231e22154e471)
* Size: 659 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 659 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 3 tokens</li><li>mean: 7.63 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 80 tokens</li><li>mean: 186.36 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 0.07</li><li>mean: 0.2</li><li>max: 0.9</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
| <code>measurement system details</code> | <code>What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.</code> | <code>0.15</code> |
| <code>measurement system tag EMED-3102-02-010</code> | <code>What is a report index or historic index?<br>Indexes represent the recorded reports generated by flow computers, classified into two types: <br>- **Hourly reports Index**: Store data for hourly events.<br>- **Daily reports Index**: Strore data for daily events.<br><br>These reports, also referred to as historical data or flow computer historical records, contain raw, first-hand measurements directly collected from the flow computer. The data has not been processed or used in any calculations, preserving its original state for analysis or validation.<br><br>The index is essential for locating specific values within the report.</code> | <code>0.24</code> |
| <code>static pressure</code> | <code>What is a Meter Stream?<br>A Meter Stream represents a measurement system configured within a flow computer. It serves as the interface between the physical measurement system and the computational processes that record and analyze flow data.<br><br>Key Aspects of a Meter Stream:<br>- Status: Indicates whether the meter stream is active or inactive.<br>- Measurement System Association: Links the meter stream to a specific measurement system, ensuring that the data collected corresponds to a defined physical setup.<br>- Flow Computer Association: Identifies the flow computer responsible for managing and recording the measurement system's data.<br>Why is a Meter Stream Important?<br>A **meter stream** is a critical component in flow measurement, as it ensures that the measurement system is correctly integrated into the flow computer for accurate monitoring and reporting. Since each flow computer can handle multiple meter streams, proper configuration is essential for maintaining data integrity and traceability.</code> | <code>0.1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `gradient_accumulation_steps`: 4
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 2.3953 | 460 | 0.8121 | - |
| 2.4473 | 470 | 1.7843 | - |
| 2.4993 | 480 | 3.0975 | - |
| 2.5514 | 490 | 0.8585 | - |
| 2.6034 | 500 | 2.7931 | - |
| 2.6554 | 510 | 1.4479 | - |
| 2.7074 | 520 | 1.6132 | - |
| 2.7594 | 530 | 0.8279 | - |
| 2.8114 | 540 | 2.0968 | - |
| 2.8635 | 550 | 1.5086 | - |
| 2.9155 | 560 | 1.7022 | - |
| 2.9675 | 570 | 1.7252 | - |
| 3.0208 | 580 | 0.329 | - |
| 3.0728 | 590 | 3.0231 | - |
| 3.1248 | 600 | 1.2077 | 0.4939 |
| 3.1769 | 610 | 1.7389 | - |
| 3.2289 | 620 | 1.747 | - |
| 3.2809 | 630 | 2.608 | - |
| 3.3329 | 640 | 2.3748 | - |
| 3.3849 | 650 | 0.9898 | - |
| 3.4369 | 660 | 3.6768 | - |
| 3.4889 | 670 | 1.7257 | - |
| 3.5410 | 680 | 1.2324 | - |
| 3.5930 | 690 | 1.4847 | - |
| 3.6450 | 700 | 0.5312 | - |
| 3.6970 | 710 | 2.6352 | - |
| 3.7490 | 720 | 3.3293 | - |
| 3.8010 | 730 | 1.0756 | - |
| 3.8531 | 740 | 1.2176 | - |
| 3.9051 | 750 | 1.4641 | 0.2318 |
| 3.9571 | 760 | 0.4642 | - |
| 4.0052 | 770 | 0.8467 | - |
| 4.0572 | 780 | 0.6422 | - |
| 4.1092 | 790 | 1.2341 | - |
| 4.1612 | 800 | 1.2382 | - |
| 4.2133 | 810 | 0.8518 | - |
| 4.2653 | 820 | 2.2545 | - |
| 4.3173 | 830 | 1.0461 | - |
| 4.3693 | 840 | 1.4097 | - |
| 4.4213 | 850 | 1.6382 | - |
| 4.4733 | 860 | 3.3653 | - |
| 4.5254 | 870 | 1.6778 | - |
| 4.5774 | 880 | 2.4592 | - |
| 4.6294 | 890 | 2.3244 | - |
| 4.6814 | 900 | 0.7048 | 0.2351 |
| 4.7334 | 910 | 1.507 | - |
| 4.7854 | 920 | 1.9508 | - |
| 4.8375 | 930 | 0.9046 | - |
| 4.8895 | 940 | 1.3923 | - |
| 4.9415 | 950 | 2.8222 | - |
| 4.9935 | 960 | 0.8341 | - |
| 5.0416 | 970 | 1.7129 | - |
| 5.0936 | 980 | 0.5792 | - |
| 5.1456 | 990 | 1.5091 | - |
| 5.1977 | 1000 | 0.8392 | - |
| 5.2497 | 1010 | 1.3499 | - |
| 5.3017 | 1020 | 1.1315 | - |
| 5.3537 | 1030 | 0.8192 | - |
| 5.4057 | 1040 | 0.3839 | - |
| 5.4577 | 1050 | 0.887 | 0.3572 |
| 5.5098 | 1060 | 0.9957 | - |
| 5.5618 | 1070 | 1.4341 | - |
| 5.6138 | 1080 | 0.5888 | - |
| 5.6658 | 1090 | 1.4963 | - |
| 5.7178 | 1100 | 1.5912 | - |
| 5.7698 | 1110 | 1.3382 | - |
| 5.8218 | 1120 | 1.4406 | - |
| 5.8739 | 1130 | 1.0845 | - |
| 5.9259 | 1140 | 0.2931 | - |
| 5.9779 | 1150 | 0.8994 | - |
| 6.0260 | 1160 | 1.1391 | - |
| 6.0780 | 1170 | 1.4646 | - |
| 6.1300 | 1180 | 0.509 | - |
| 6.1821 | 1190 | 0.4108 | - |
| 6.2341 | 1200 | 0.418 | 0.2573 |
| 6.2861 | 1210 | 1.4609 | - |
| 6.3381 | 1220 | 1.4237 | - |
| 6.3901 | 1230 | 0.6612 | - |
| 6.4421 | 1240 | 1.52 | - |
| 6.4941 | 1250 | 0.9426 | - |
| 6.5462 | 1260 | 1.5047 | - |
| 6.5982 | 1270 | 0.2918 | - |
| 6.6502 | 1280 | 0.96 | - |
| 6.7022 | 1290 | 1.6685 | - |
| 6.7542 | 1300 | 0.6779 | - |
| 6.8062 | 1310 | 0.0522 | - |
| 6.8583 | 1320 | 1.5055 | - |
| 6.9103 | 1330 | 0.2947 | - |
| 6.9623 | 1340 | 0.7499 | - |
| 7.0104 | 1350 | 2.6794 | 0.1881 |
| 7.0624 | 1360 | 1.4322 | - |
| 7.1144 | 1370 | 0.1859 | - |
| 7.1664 | 1380 | 1.0946 | - |
| 7.2185 | 1390 | 1.0941 | - |
| 7.2705 | 1400 | 0.8873 | - |
| 7.3225 | 1410 | 0.3996 | - |
| 7.3745 | 1420 | 0.159 | - |
| 7.4265 | 1430 | 0.7672 | - |
| 7.4785 | 1440 | 0.6511 | - |
| 7.5306 | 1450 | 0.2682 | - |
| 7.5826 | 1460 | 1.5488 | - |
| 7.6346 | 1470 | 0.4513 | - |
| 7.6866 | 1480 | 0.7482 | - |
| 7.7386 | 1490 | 1.4327 | - |
| 7.7906 | 1500 | 1.0277 | 0.1801 |
| 7.8427 | 1510 | 0.4197 | - |
| 7.8947 | 1520 | 3.3415 | - |
| 7.9467 | 1530 | 0.7131 | - |
| 7.9987 | 1540 | 0.7276 | - |
| 8.0468 | 1550 | 1.1939 | - |
| 8.0988 | 1560 | 0.4333 | - |
| 8.1508 | 1570 | 1.3594 | - |
| 8.2029 | 1580 | 0.9792 | - |
| 8.2549 | 1590 | 0.4581 | - |
| 8.3069 | 1600 | 0.5785 | - |
| 8.3589 | 1610 | 0.4015 | - |
| 8.4109 | 1620 | 0.5693 | - |
| 8.4629 | 1630 | 1.4925 | - |
| 8.5150 | 1640 | 0.6028 | - |
| 8.5670 | 1650 | 0.2087 | 0.1802 |
| 8.6190 | 1660 | 1.0404 | - |
| 8.6710 | 1670 | 0.8293 | - |
| 8.7230 | 1680 | 1.1231 | - |
| 8.7750 | 1690 | 0.4747 | - |
| 8.8270 | 1700 | 1.0668 | - |
| 8.8791 | 1710 | 1.2665 | - |
| 8.9311 | 1720 | 0.3004 | - |
| 8.9831 | 1730 | 0.1333 | - |
| 9.0312 | 1740 | 1.0171 | - |
| 9.0832 | 1750 | 1.3999 | - |
| 9.1352 | 1760 | 0.1939 | - |
| 9.1873 | 1770 | 0.1591 | - |
| 9.2393 | 1780 | 0.1243 | - |
| 9.2913 | 1790 | 0.8689 | - |
| 9.3433 | 1800 | 0.4325 | 0.1501 |
| 9.3953 | 1810 | 0.5094 | - |
| 9.4473 | 1820 | 0.3178 | - |
| 9.4993 | 1830 | 0.211 | - |
| 9.5514 | 1840 | 1.3497 | - |
| 9.6034 | 1850 | 0.6287 | - |
| 9.6554 | 1860 | 0.4895 | - |
| 9.7074 | 1870 | 0.3925 | - |
| 9.7594 | 1880 | 0.4384 | - |
| 9.8114 | 1890 | 0.8487 | - |
| 9.8635 | 1900 | 0.9134 | - |
| 9.9155 | 1910 | 0.1522 | - |
| 9.9675 | 1920 | 0.3798 | - |
</details>
### Framework Versions
- Python: 3.11.0
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |