My First RL Agent
Browse files- README.md +37 -3
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 237.89 +/- 32.98
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78f8e96bee80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f8e96bef20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f8e96befc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f8e96bf060>", "_build": "<function ActorCriticPolicy._build at 0x78f8e96bf100>", "forward": "<function ActorCriticPolicy.forward at 0x78f8e96bf1a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f8e96bf240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f8e96bf2e0>", "_predict": "<function ActorCriticPolicy._predict at 0x78f8e96bf380>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f8e96bf420>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f8e96bf4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f8e96bf560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f8ea7e5f00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737624297981806868, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIZ/Ob7Jpwo90mvvPdKch77ANyg9nSa1vAAAAAAAAAAAJgWpvejAwj5LqZM8l7uCvri4ATwM2cW9AAAAAAAAAAAzC5Y7dJKYP/23aTxbopi+VWQGPf6tirsAAAAAAAAAAM3q+bxIY426Xfr+tEmbdK82qcW4ff9nNAAAgD8AAIA/U2wJPkVaCT/L8AC+BIN8vqFo7zxmlHG9AAAAAAAAAAAKkLq+aA2evd3WCTnKLvM3xwWWPuolWLgAAIA/AACAPwA5C72qfiE+SguivcnPV75eWiu92Jh5PAAAAAAAAAAAs4BDPUI9gT5gSe69M4xpvuTQybyiR0a9AAAAAAAAAABaKty99oR1uvW6IzoNTpw1sa1JuoU4P7kAAIA/AAAAAJp5VrqkobQ/vcCpvXlAPzyvTXo6ac6ZPAAAAAAAAAAADc2NvVI39LvXRou6w+GJPAeYbr2YE2c9AACAPwAAgD8APp29XDNRupa8iTs9y6w2zj4iumdYoDUAAAAAAAAAABrQ072cbSc9CoxnPewIuL3U9mk8gnC4vQAAAAAAAAAATQg9PtRZBD95YEK+m5yQvrIa8Dz3low8AAAAAAAAAABzqoC9sDLrPoZ+dTxTVIe+N8f3PMSpCb0AAAAAAAAAAOPAbL6kdOU+XYIQPp1Xgr5BKFm81P8aPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBRbGWD6FeMAWyUTT4BjAF0lEdAlXxetCAtnXV9lChoBkdAQF36XSjQA2gHTQwBaAhHQJV8/iDM/yJ1fZQoaAZHQHDec41gpjNoB01EAWgIR0CVfSiH6/IsdX2UKGgGR0A5DXF98Z1naAdL9mgIR0CVffj4593KdX2UKGgGR0Bs6xxxT850aAdNMQFoCEdAlX4RA0Kqn3V9lChoBkdAbSl1schkiGgHTSMBaAhHQJV+o3m3fAN1fZQoaAZHQHAQqVMVUMpoB00nAWgIR0CVgBX18LKFdX2UKGgGR0BwhP/kvK2baAdNawFoCEdAlZHvIsAeaXV9lChoBkdAb3Zdmg8KX2gHTRsBaAhHQJWSTU6PsAx1fZQoaAZHQHHk987ZFodoB01RAWgIR0CVk0kZrHlwdX2UKGgGR0BwDGd+XqqwaAdNHgFoCEdAlZYgYpDu0HV9lChoBkdAb0BkS26TXGgHTSUBaAhHQJWWZ9Tgl4V1fZQoaAZHQG6bOoP07KdoB01XAWgIR0CVlqL2HtWudX2UKGgGR0BwlEr3Cbc5aAdNSQFoCEdAlZcfjsD4g3V9lChoBkdAbhO4EwFkhGgHTUQBaAhHQJWYjUPQOWl1fZQoaAZHQHAq2attALRoB00pAWgIR0CVmQ2AG0NSdX2UKGgGR0BDNIFvAGjcaAdNCQFoCEdAlZkmxD9fkXV9lChoBkdAbKKqWC2+f2gHTT8BaAhHQJWZsvqTr3V1fZQoaAZHQHC9vpyIYWNoB00pAWgIR0CVmbPuogmrdX2UKGgGR0ByqKOlwcYJaAdNOAFoCEdAlZowWznienV9lChoBkdAcWBNwR5C4WgHTWMBaAhHQJWaV5gPVd51fZQoaAZHQG2qxi5NGmVoB03fAWgIR0CVmsOeJ53UdX2UKGgGR0BvRFvQ4S6EaAdNHAFoCEdAlZt/gNwzcnV9lChoBkdAcXERbbDdg2gHTUoBaAhHQJWcDeXRgJF1fZQoaAZHwC5xbr1M/QloB0v1aAhHQJWd8QlKK511fZQoaAZHQHACp/5LytpoB01zAWgIR0CVnys9B8hLdX2UKGgGR0BxS0RK6FufaAdNPAFoCEdAlaDHgDRtxnV9lChoBkdAcImWxhUip2gHTVsBaAhHQJWhfikwevJ1fZQoaAZHQG4JPVurIYFoB01CAWgIR0CVoYkZrHlwdX2UKGgGR0A9IDKHO8kEaAdL3GgIR0CVodSiudPMdX2UKGgGR0A+gyM1jy4GaAdL4GgIR0CVowX5FgDzdX2UKGgGR0BvAHqX4TK1aAdNRgFoCEdAlaMZD7ZWaXV9lChoBkdAcZD8Hv+fiGgHTRQBaAhHQJWjGZw4sEt1fZQoaAZHQG4mvlU6xPhoB00qAWgIR0CVo0LVnVXndX2UKGgGR0BwjMNiH6/JaAdNPAFoCEdAlaNTQzDXOHV9lChoBkdAcJjnkkrwv2gHTTEBaAhHQJWje0fHPu51fZQoaAZHQG78BfKISDhoB01cAWgIR0CVpBoESuhcdX2UKGgGR0BrMDP2PDHfaAdNSgJoCEdAlaS1Sn+AE3V9lChoBkdAb2yLtNSIg2gHTTkBaAhHQJWl5RWLgoB1fZQoaAZHQHJONg0CRwJoB01BAWgIR0CVqB+bmU4adX2UKGgGR0BwsFPO6d1/aAdNGQFoCEdAlal2sq8UVXV9lChoBkdAOfxjz7MxGmgHS+loCEdAlao2u5jH43V9lChoBkdAcM0889wFT2gHTSoBaAhHQJWrYAq/dqN1fZQoaAZHQHAppCWu5jJoB01EAWgIR0CVrVE0iyIIdX2UKGgGR0Bxy3R2KVIJaAdNTgFoCEdAla1vkeZG8XV9lChoBkdAbeHN/vv0AmgHTTQBaAhHQJWuS0iQkop1fZQoaAZHQHIJPgR9PUNoB01LAWgIR0CVr7Hggow3dX2UKGgGR0BwfpuxbB42aAdNWAFoCEdAlbARq9GqgnV9lChoBkdAbdcLx7RfGGgHTVEBaAhHQJWwK1OTJQt1fZQoaAZHQG9vfJeVs1toB01hAWgIR0CVsRxTbWVedX2UKGgGR0ByJR1loUSJaAdNNQFoCEdAlbFT2FnIyXV9lChoBkdAcDzDoyKvV2gHTVMBaAhHQJWxhuwX6691fZQoaAZHQG46vhhpg1FoB01LAWgIR0CVtBRDkU9IdX2UKGgGR0BqrfT9bX6JaAdNKgJoCEdAlbSQe7tiQXV9lChoBkdAcCcebd8ArGgHTUkBaAhHQJXH0U8FINF1fZQoaAZHQG5CtAcDKYBoB00WAWgIR0CVyfI/JNj9dX2UKGgGR0BvcrKPn0TUaAdNRAFoCEdAlcpi+QEIPnV9lChoBkdAcKpzXSSeRWgHTV0BaAhHQJXKiRzRx951fZQoaAZHQG4xUZNwiq1oB02HAWgIR0CVy5BvrGBGdX2UKGgGR0ByEvwtrbg1aAdNdANoCEdAlcut7WuoxnV9lChoBkdAce0sKsuFpWgHTV8BaAhHQJXMt7RfF751fZQoaAZHQHEwm8mKIi1oB001AWgIR0CVzNrzoUzsdX2UKGgGR0BsG0EV32VWaAdNNQFoCEdAlc0RJul41XV9lChoBkdAb3nMlkYoAmgHTXEBaAhHQJXN7889wFV1fZQoaAZHQHBgCquKXOZoB01dAWgIR0CVznWjXWe6dX2UKGgGR0Bs2NVPva11aAdNRQFoCEdAlc6Fvl2eQXV9lChoBkdAa8YdxQzk62gHTSYBaAhHQJXPrbah6B11fZQoaAZHQHBPMJ+lTFVoB012AWgIR0CV0CQ9zOopdX2UKGgGR0BwP9Kf4AS4aAdNQQFoCEdAldDKTnq3VnV9lChoBkdAb8c7EHdGiGgHTaABaAhHQJXRELncL0B1fZQoaAZHQG+vqL0jC55oB01hAWgIR0CV025Ke05VdX2UKGgGR0ByXzG4qgAZaAdNNAFoCEdAldVHx8UmD3V9lChoBkdAcRf2wmmcfGgHTT0BaAhHQJXVuPQv6CV1fZQoaAZHQG/WieumrKhoB00pAWgIR0CV1iXCTEBKdX2UKGgGR0BvmmpIczZZaAdNRwFoCEdAldd3NgSey3V9lChoBkdAbng+CbtqpWgHTZ4BaAhHQJXYKAPNFBp1fZQoaAZHQGvemP5pJwtoB01EAWgIR0CV2OpRGc4HdX2UKGgGR0BwGdwZOzppaAdNfQFoCEdAldkkQf6oEXV9lChoBkdAbBuT/yXlbWgHTTEBaAhHQJXZrTXrdFh1fZQoaAZHwAHuM2m51/5oB00LAWgIR0CV2fSofjjrdX2UKGgGR0ByYd+kP+XJaAdNLAFoCEdAldqtzS1E3XV9lChoBkdAceXwx33Yc2gHTfIBaAhHQJXayaRZED11fZQoaAZHQGwQ5E2HclBoB03/AWgIR0CV2tvHcUM5dX2UKGgGR0BwPi3Ytg8baAdNkQFoCEdAldrZK8L8aXV9lChoBkdAcSDLdN34bmgHTYsBaAhHQJXco52hZhd1fZQoaAZHQGuYoRh+fAdoB01NAWgIR0CV3nNn5BTodX2UKGgGR0BvPZMQEpy7aAdNIQFoCEdAld96QFLWZ3V9lChoBkdAcbftShrWRWgHTTABaAhHQJXgtUIcBEN1fZQoaAZHQHAISgf2bodoB01YAWgIR0CV4Xc7yQPqdX2UKGgGR0BxTiEzwc5saAdNMgFoCEdAleJuy/sVtXV9lChoBkdARz2MERrad2gHS+RoCEdAleNaqCHymXV9lChoBkdAcWEoaUA1emgHTTgBaAhHQJXjcJv5xip1fZQoaAZHQHJMkfkmx+toB00jAWgIR0CV43HJcPe6dX2UKGgGR0Bw2Yhpxm03aAdNUwFoCEdAleXKIvalDXV9lChoBkdAcPYAksz2vmgHTUoBaAhHQJXmH/Mnqml1fZQoaAZHQHAbui35N49oB008AWgIR0CV5u+jdpIudX2UKGgGR0BrGuIqLCN0aAdNOQFoCEdAlecQkka/AXV9lChoBkdAcObHo5ggHWgHTT8BaAhHQJXnOKtPpIN1fZQoaAZHQHC7NK7I1cdoB01KAWgIR0CV6g3F1jiGdX2UKGgGR0BweU0pEx7BaAdNRQFoCEdAleufo/zJ63VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1c35a4f715942d1423ebbfccbd64864e436ac1a2c72420d725e1d2e63180753
|
3 |
+
size 148128
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78f8e96bee80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f8e96bef20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f8e96befc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f8e96bf060>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78f8e96bf100>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78f8e96bf1a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78f8e96bf240>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f8e96bf2e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78f8e96bf380>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f8e96bf420>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f8e96bf4c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78f8e96bf560>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78f8ea7e5f00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1737624297981806868,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIZ/Ob7Jpwo90mvvPdKch77ANyg9nSa1vAAAAAAAAAAAJgWpvejAwj5LqZM8l7uCvri4ATwM2cW9AAAAAAAAAAAzC5Y7dJKYP/23aTxbopi+VWQGPf6tirsAAAAAAAAAAM3q+bxIY426Xfr+tEmbdK82qcW4ff9nNAAAgD8AAIA/U2wJPkVaCT/L8AC+BIN8vqFo7zxmlHG9AAAAAAAAAAAKkLq+aA2evd3WCTnKLvM3xwWWPuolWLgAAIA/AACAPwA5C72qfiE+SguivcnPV75eWiu92Jh5PAAAAAAAAAAAs4BDPUI9gT5gSe69M4xpvuTQybyiR0a9AAAAAAAAAABaKty99oR1uvW6IzoNTpw1sa1JuoU4P7kAAIA/AAAAAJp5VrqkobQ/vcCpvXlAPzyvTXo6ac6ZPAAAAAAAAAAADc2NvVI39LvXRou6w+GJPAeYbr2YE2c9AACAPwAAgD8APp29XDNRupa8iTs9y6w2zj4iumdYoDUAAAAAAAAAABrQ072cbSc9CoxnPewIuL3U9mk8gnC4vQAAAAAAAAAATQg9PtRZBD95YEK+m5yQvrIa8Dz3low8AAAAAAAAAABzqoC9sDLrPoZ+dTxTVIe+N8f3PMSpCb0AAAAAAAAAAOPAbL6kdOU+XYIQPp1Xgr5BKFm81P8aPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBRbGWD6FeMAWyUTT4BjAF0lEdAlXxetCAtnXV9lChoBkdAQF36XSjQA2gHTQwBaAhHQJV8/iDM/yJ1fZQoaAZHQHDec41gpjNoB01EAWgIR0CVfSiH6/IsdX2UKGgGR0A5DXF98Z1naAdL9mgIR0CVffj4593KdX2UKGgGR0Bs6xxxT850aAdNMQFoCEdAlX4RA0Kqn3V9lChoBkdAbSl1schkiGgHTSMBaAhHQJV+o3m3fAN1fZQoaAZHQHAQqVMVUMpoB00nAWgIR0CVgBX18LKFdX2UKGgGR0BwhP/kvK2baAdNawFoCEdAlZHvIsAeaXV9lChoBkdAb3Zdmg8KX2gHTRsBaAhHQJWSTU6PsAx1fZQoaAZHQHHk987ZFodoB01RAWgIR0CVk0kZrHlwdX2UKGgGR0BwDGd+XqqwaAdNHgFoCEdAlZYgYpDu0HV9lChoBkdAb0BkS26TXGgHTSUBaAhHQJWWZ9Tgl4V1fZQoaAZHQG6bOoP07KdoB01XAWgIR0CVlqL2HtWudX2UKGgGR0BwlEr3Cbc5aAdNSQFoCEdAlZcfjsD4g3V9lChoBkdAbhO4EwFkhGgHTUQBaAhHQJWYjUPQOWl1fZQoaAZHQHAq2attALRoB00pAWgIR0CVmQ2AG0NSdX2UKGgGR0BDNIFvAGjcaAdNCQFoCEdAlZkmxD9fkXV9lChoBkdAbKKqWC2+f2gHTT8BaAhHQJWZsvqTr3V1fZQoaAZHQHC9vpyIYWNoB00pAWgIR0CVmbPuogmrdX2UKGgGR0ByqKOlwcYJaAdNOAFoCEdAlZowWznienV9lChoBkdAcWBNwR5C4WgHTWMBaAhHQJWaV5gPVd51fZQoaAZHQG2qxi5NGmVoB03fAWgIR0CVmsOeJ53UdX2UKGgGR0BvRFvQ4S6EaAdNHAFoCEdAlZt/gNwzcnV9lChoBkdAcXERbbDdg2gHTUoBaAhHQJWcDeXRgJF1fZQoaAZHwC5xbr1M/QloB0v1aAhHQJWd8QlKK511fZQoaAZHQHACp/5LytpoB01zAWgIR0CVnys9B8hLdX2UKGgGR0BxS0RK6FufaAdNPAFoCEdAlaDHgDRtxnV9lChoBkdAcImWxhUip2gHTVsBaAhHQJWhfikwevJ1fZQoaAZHQG4JPVurIYFoB01CAWgIR0CVoYkZrHlwdX2UKGgGR0A9IDKHO8kEaAdL3GgIR0CVodSiudPMdX2UKGgGR0A+gyM1jy4GaAdL4GgIR0CVowX5FgDzdX2UKGgGR0BvAHqX4TK1aAdNRgFoCEdAlaMZD7ZWaXV9lChoBkdAcZD8Hv+fiGgHTRQBaAhHQJWjGZw4sEt1fZQoaAZHQG4mvlU6xPhoB00qAWgIR0CVo0LVnVXndX2UKGgGR0BwjMNiH6/JaAdNPAFoCEdAlaNTQzDXOHV9lChoBkdAcJjnkkrwv2gHTTEBaAhHQJWje0fHPu51fZQoaAZHQG78BfKISDhoB01cAWgIR0CVpBoESuhcdX2UKGgGR0BrMDP2PDHfaAdNSgJoCEdAlaS1Sn+AE3V9lChoBkdAb2yLtNSIg2gHTTkBaAhHQJWl5RWLgoB1fZQoaAZHQHJONg0CRwJoB01BAWgIR0CVqB+bmU4adX2UKGgGR0BwsFPO6d1/aAdNGQFoCEdAlal2sq8UVXV9lChoBkdAOfxjz7MxGmgHS+loCEdAlao2u5jH43V9lChoBkdAcM0889wFT2gHTSoBaAhHQJWrYAq/dqN1fZQoaAZHQHAppCWu5jJoB01EAWgIR0CVrVE0iyIIdX2UKGgGR0Bxy3R2KVIJaAdNTgFoCEdAla1vkeZG8XV9lChoBkdAbeHN/vv0AmgHTTQBaAhHQJWuS0iQkop1fZQoaAZHQHIJPgR9PUNoB01LAWgIR0CVr7Hggow3dX2UKGgGR0BwfpuxbB42aAdNWAFoCEdAlbARq9GqgnV9lChoBkdAbdcLx7RfGGgHTVEBaAhHQJWwK1OTJQt1fZQoaAZHQG9vfJeVs1toB01hAWgIR0CVsRxTbWVedX2UKGgGR0ByJR1loUSJaAdNNQFoCEdAlbFT2FnIyXV9lChoBkdAcDzDoyKvV2gHTVMBaAhHQJWxhuwX6691fZQoaAZHQG46vhhpg1FoB01LAWgIR0CVtBRDkU9IdX2UKGgGR0BqrfT9bX6JaAdNKgJoCEdAlbSQe7tiQXV9lChoBkdAcCcebd8ArGgHTUkBaAhHQJXH0U8FINF1fZQoaAZHQG5CtAcDKYBoB00WAWgIR0CVyfI/JNj9dX2UKGgGR0BvcrKPn0TUaAdNRAFoCEdAlcpi+QEIPnV9lChoBkdAcKpzXSSeRWgHTV0BaAhHQJXKiRzRx951fZQoaAZHQG4xUZNwiq1oB02HAWgIR0CVy5BvrGBGdX2UKGgGR0ByEvwtrbg1aAdNdANoCEdAlcut7WuoxnV9lChoBkdAce0sKsuFpWgHTV8BaAhHQJXMt7RfF751fZQoaAZHQHEwm8mKIi1oB001AWgIR0CVzNrzoUzsdX2UKGgGR0BsG0EV32VWaAdNNQFoCEdAlc0RJul41XV9lChoBkdAb3nMlkYoAmgHTXEBaAhHQJXN7889wFV1fZQoaAZHQHBgCquKXOZoB01dAWgIR0CVznWjXWe6dX2UKGgGR0Bs2NVPva11aAdNRQFoCEdAlc6Fvl2eQXV9lChoBkdAa8YdxQzk62gHTSYBaAhHQJXPrbah6B11fZQoaAZHQHBPMJ+lTFVoB012AWgIR0CV0CQ9zOopdX2UKGgGR0BwP9Kf4AS4aAdNQQFoCEdAldDKTnq3VnV9lChoBkdAb8c7EHdGiGgHTaABaAhHQJXRELncL0B1fZQoaAZHQG+vqL0jC55oB01hAWgIR0CV025Ke05VdX2UKGgGR0ByXzG4qgAZaAdNNAFoCEdAldVHx8UmD3V9lChoBkdAcRf2wmmcfGgHTT0BaAhHQJXVuPQv6CV1fZQoaAZHQG/WieumrKhoB00pAWgIR0CV1iXCTEBKdX2UKGgGR0BvmmpIczZZaAdNRwFoCEdAldd3NgSey3V9lChoBkdAbng+CbtqpWgHTZ4BaAhHQJXYKAPNFBp1fZQoaAZHQGvemP5pJwtoB01EAWgIR0CV2OpRGc4HdX2UKGgGR0BwGdwZOzppaAdNfQFoCEdAldkkQf6oEXV9lChoBkdAbBuT/yXlbWgHTTEBaAhHQJXZrTXrdFh1fZQoaAZHwAHuM2m51/5oB00LAWgIR0CV2fSofjjrdX2UKGgGR0ByYd+kP+XJaAdNLAFoCEdAldqtzS1E3XV9lChoBkdAceXwx33Yc2gHTfIBaAhHQJXayaRZED11fZQoaAZHQGwQ5E2HclBoB03/AWgIR0CV2tvHcUM5dX2UKGgGR0BwPi3Ytg8baAdNkQFoCEdAldrZK8L8aXV9lChoBkdAcSDLdN34bmgHTYsBaAhHQJXco52hZhd1fZQoaAZHQGuYoRh+fAdoB01NAWgIR0CV3nNn5BTodX2UKGgGR0BvPZMQEpy7aAdNIQFoCEdAld96QFLWZ3V9lChoBkdAcbftShrWRWgHTTABaAhHQJXgtUIcBEN1fZQoaAZHQHAISgf2bodoB01YAWgIR0CV4Xc7yQPqdX2UKGgGR0BxTiEzwc5saAdNMgFoCEdAleJuy/sVtXV9lChoBkdARz2MERrad2gHS+RoCEdAleNaqCHymXV9lChoBkdAcWEoaUA1emgHTTgBaAhHQJXjcJv5xip1fZQoaAZHQHJMkfkmx+toB00jAWgIR0CV43HJcPe6dX2UKGgGR0Bw2Yhpxm03aAdNUwFoCEdAleXKIvalDXV9lChoBkdAcPYAksz2vmgHTUoBaAhHQJXmH/Mnqml1fZQoaAZHQHAbui35N49oB008AWgIR0CV5u+jdpIudX2UKGgGR0BrGuIqLCN0aAdNOQFoCEdAlecQkka/AXV9lChoBkdAcObHo5ggHWgHTT8BaAhHQJXnOKtPpIN1fZQoaAZHQHC7NK7I1cdoB01KAWgIR0CV6g3F1jiGdX2UKGgGR0BweU0pEx7BaAdNRQFoCEdAleufo/zJ63VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26168fd4bd480c8c5be920aff78a8d6d2eacf4ca7a20a531a5ea4956fa829b0d
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77c350d404c8fe3c55e208c060fa2eb0b23f40ecb0ad5e0509d2cf3d2cfa67f1
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (187 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 237.8894909, "std_reward": 32.9781680826646, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-23T09:53:00.784785"}
|