Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.13 +/- 0.30
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd67981e1568adc9ffabb46a1a99c9009401c11e1963b67f003141b696d2cc80
|
3 |
+
size 107829
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x16dca0dc0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x16dca1740>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1684839206049276000,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9Vc2Vycy9sZW5uYXJ0L21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL1VzZXJzL2xlbm5hcnQvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkiHDPlFQ77zm3RQ/kiHDPlFQ77zm3RQ/kiHDPlFQ77zm3RQ/kiHDPlFQ77zm3RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABuUCP9AJDb4myhY/1E8MP9j7Lb3eq9O/5/rJv2WcjT/exYW/Y4CAvfW/uT5k/S4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSIcM+UVDvvObdFD+BNvE7qysUu4398TuSIcM+UVDvvObdFD+BNvE7qysUu4398TuSIcM+UVDvvObdFD+BNvE7qysUu4398TuSIcM+UVDvvObdFD+BNvE7qysUu4398TuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.3811155 -0.0292131 0.5815109]\n [ 0.3811155 -0.0292131 0.5815109]\n [ 0.3811155 -0.0292131 0.5815109]\n [ 0.3811155 -0.0292131 0.5815109]]",
|
38 |
+
"desired_goal": "[[ 0.5113071 -0.13773274 0.58902204]\n [ 0.5480931 -0.04247651 -1.6536825 ]\n [-1.5779694 1.1063353 -1.0451009 ]\n [-0.06274488 0.36279264 0.68355393]]",
|
39 |
+
"observation": "[[ 0.3811155 -0.0292131 0.5815109 0.00736123 -0.0022609 0.00738496]\n [ 0.3811155 -0.0292131 0.5815109 0.00736123 -0.0022609 0.00738496]\n [ 0.3811155 -0.0292131 0.5815109 0.00736123 -0.0022609 0.00738496]\n [ 0.3811155 -0.0292131 0.5815109 0.00736123 -0.0022609 0.00738496]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1lHwPPIGvz2XNhE+pvwzvbZYXL08IGs+1vsIvkM+xT2rwxc96IXfvWCVfr2eBL09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.0293359 0.09327497 0.1418098 ]\n [-0.04394212 -0.05379554 0.22961515]\n [-0.13377318 0.09631016 0.03705184]\n [-0.10914212 -0.06215417 0.09229396]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0qqWdJQDAMCUhpRSlIwBbJRLMowBdJRHQJsIGfL9uP51fZQoaAZoCWgPQwgv3/qw3ggIwJSGlFKUaBVLMmgWR0CbB+LmZE2HdX2UKGgGaAloD0MIq1/pfHjW/L+UhpRSlGgVSzJoFkdAmwejAWSEDnV9lChoBmgJaA9DCCBB8WPM/QHAlIaUUpRoFUsyaBZHQJsHZWcSXdF1fZQoaAZoCWgPQwgtlExO7Uzxv5SGlFKUaBVLMmgWR0CbCMXXiBGydX2UKGgGaAloD0MIlZ1+UBepAsCUhpRSlGgVSzJoFkdAmwiO+mFajnV9lChoBmgJaA9DCMbAOo4fKvi/lIaUUpRoFUsyaBZHQJsITt5UtI11fZQoaAZoCWgPQwguBDkoYcYBwJSGlFKUaBVLMmgWR0CbCBETQE6ldX2UKGgGaAloD0MIiQyreCMz+L+UhpRSlGgVSzJoFkdAmwlmt6ol2XV9lChoBmgJaA9DCBhBYyZRr++/lIaUUpRoFUsyaBZHQJsJL5N47ih1fZQoaAZoCWgPQwiU2/Y96i8BwJSGlFKUaBVLMmgWR0CbCO9ycTakdX2UKGgGaAloD0MIdChDVUwl/b+UhpRSlGgVSzJoFkdAmwixr8BMjHV9lChoBmgJaA9DCAHChxItGQTAlIaUUpRoFUsyaBZHQJsKCv0RODd1fZQoaAZoCWgPQwj/kenQ6XkDwJSGlFKUaBVLMmgWR0CbCdPuogmrdX2UKGgGaAloD0MIhSf0+pN4+L+UhpRSlGgVSzJoFkdAmwmTyOJcgXV9lChoBmgJaA9DCHO9baZC/Pm/lIaUUpRoFUsyaBZHQJsJViWmgrZ1fZQoaAZoCWgPQwgS3EjZIkkDwJSGlFKUaBVLMmgWR0CbCqxG2CumdX2UKGgGaAloD0MIuQA0SpceA8CUhpRSlGgVSzJoFkdAmwp1SOzY3HV9lChoBmgJaA9DCOEmo8owLvy/lIaUUpRoFUsyaBZHQJsKNT5wfhd1fZQoaAZoCWgPQwhOe0rOiV0AwJSGlFKUaBVLMmgWR0CbCffE4vOAdX2UKGgGaAloD0MIIos08Q4w/L+UhpRSlGgVSzJoFkdAmwtZuMuOCHV9lChoBmgJaA9DCB7BjZQtUv2/lIaUUpRoFUsyaBZHQJsLIqDsdDJ1fZQoaAZoCWgPQwj/IJIhxxb2v5SGlFKUaBVLMmgWR0CbCuJzDGcXdX2UKGgGaAloD0MIc9U8R+T7/r+UhpRSlGgVSzJoFkdAmwqlSGahH3V9lChoBmgJaA9DCFjjbDoCuPu/lIaUUpRoFUsyaBZHQJsMAvtdAxB1fZQoaAZoCWgPQwithO6SOEsDwJSGlFKUaBVLMmgWR0CbC8vs7dSEdX2UKGgGaAloD0MIUiy3tBpS+b+UhpRSlGgVSzJoFkdAmwuL1EmY0HV9lChoBmgJaA9DCEJ3SZwV0f2/lIaUUpRoFUsyaBZHQJsLTjR2KVJ1fZQoaAZoCWgPQwi21hcJbXn0v5SGlFKUaBVLMmgWR0CbDKRQ79ycdX2UKGgGaAloD0MI76gxIeYSBsCUhpRSlGgVSzJoFkdAmwxtL6DXe3V9lChoBmgJaA9DCNVA8zl3+/i/lIaUUpRoFUsyaBZHQJsMLP6be/J1fZQoaAZoCWgPQwg1C7Q7pNjzv5SGlFKUaBVLMmgWR0CbC+9Brvb5dX2UKGgGaAloD0MI71nXaDmwA8CUhpRSlGgVSzJoFkdAmw1HG0eEI3V9lChoBmgJaA9DCHJO7KF9bPy/lIaUUpRoFUsyaBZHQJsND/zasZJ1fZQoaAZoCWgPQwhhxanWwqzzv5SGlFKUaBVLMmgWR0CbDM/0NBnjdX2UKGgGaAloD0MIq5LIPsiy97+UhpRSlGgVSzJoFkdAmwySNsFdLXV9lChoBmgJaA9DCKkvSzs1F/q/lIaUUpRoFUsyaBZHQJsN6uB+Wnl1fZQoaAZoCWgPQwj7kSIyrOLzv5SGlFKUaBVLMmgWR0CbDbPI4lyBdX2UKGgGaAloD0MIn+dPG9XJA8CUhpRSlGgVSzJoFkdAmw1zm0VrRHV9lChoBmgJaA9DCGJKJNHL6Pi/lIaUUpRoFUsyaBZHQJsNNdv863l1fZQoaAZoCWgPQwgH0sWmlUL3v5SGlFKUaBVLMmgWR0CbDowxnFo+dX2UKGgGaAloD0MIICdMGM1K97+UhpRSlGgVSzJoFkdAmw5VFQVKw3V9lChoBmgJaA9DCLnGZ7J/nvy/lIaUUpRoFUsyaBZHQJsOFO1v2oN1fZQoaAZoCWgPQwiunSgJifTzv5SGlFKUaBVLMmgWR0CbDdcv/R3NdX2UKGgGaAloD0MIx4Ds9e6PBMCUhpRSlGgVSzJoFkdAmw8xHoX9BXV9lChoBmgJaA9DCEfLgR5qm/S/lIaUUpRoFUsyaBZHQJsO+hWYF7l1fZQoaAZoCWgPQwgeiCzSxLsBwJSGlFKUaBVLMmgWR0CbDrnp0OmSdX2UKGgGaAloD0MIPggB+RJq9r+UhpRSlGgVSzJoFkdAmw58PvrnknV9lChoBmgJaA9DCLn98smK4fm/lIaUUpRoFUsyaBZHQJsPzhgmZ3N1fZQoaAZoCWgPQwhv1uB9Va4BwJSGlFKUaBVLMmgWR0CbD5b0e2d/dX2UKGgGaAloD0MIPUM4ZtmT+b+UhpRSlGgVSzJoFkdAmw9W9DhLoXV9lChoBmgJaA9DCAtBDkqYSQHAlIaUUpRoFUsyaBZHQJsPGUkfLcN1fZQoaAZoCWgPQwiNDkjCvv0FwJSGlFKUaBVLMmgWR0CbEHDvVmSRdX2UKGgGaAloD0MIVBwHXi23/7+UhpRSlGgVSzJoFkdAmxA5zkp7TnV9lChoBmgJaA9DCKw41VqYxQDAlIaUUpRoFUsyaBZHQJsP+cI7eVN1fZQoaAZoCWgPQwjDZRU2A9z+v5SGlFKUaBVLMmgWR0CbD7wX668QdX2UKGgGaAloD0MI6StIMxZN9r+UhpRSlGgVSzJoFkdAmxEQEIPbwnV9lChoBmgJaA9DCHeiJCTSNvm/lIaUUpRoFUsyaBZHQJsQ2PMjeKt1fZQoaAZoCWgPQwj8j0yHTq8JwJSGlFKUaBVLMmgWR0CbEJjASFoMdX2UKGgGaAloD0MIwocSLXl8+r+UhpRSlGgVSzJoFkdAmxBa+i8Fp3V9lChoBmgJaA9DCGstzEI75/m/lIaUUpRoFUsyaBZHQJsRsYDTz/Z1fZQoaAZoCWgPQwiUMqmhDUAEwJSGlFKUaBVLMmgWR0CbEXpeeFtbdX2UKGgGaAloD0MIFy1A22o2AcCUhpRSlGgVSzJoFkdAmxE6MFUyYXV9lChoBmgJaA9DCJTcYROZOfy/lIaUUpRoFUsyaBZHQJsQ/Ho5ggJ1fZQoaAZoCWgPQwiS5o9pbToDwJSGlFKUaBVLMmgWR0CbElL9uP3jdX2UKGgGaAloD0MIh/nyAuzj+b+UhpRSlGgVSzJoFkdAmxIb212JSHV9lChoBmgJaA9DCILGTKJe8Pe/lIaUUpRoFUsyaBZHQJsR26tknTl1fZQoaAZoCWgPQwj75v7qcd/4v5SGlFKUaBVLMmgWR0CbEZ3solUqdX2UKGgGaAloD0MIuFz92CTfAMCUhpRSlGgVSzJoFkdAmxL1SwW30HV9lChoBmgJaA9DCMqHoGr0KgbAlIaUUpRoFUsyaBZHQJsSvibUgB91fZQoaAZoCWgPQwjg2LPnMpUCwJSGlFKUaBVLMmgWR0CbEn336AOKdX2UKGgGaAloD0MIGCe+2lFc/L+UhpRSlGgVSzJoFkdAmxJARGtp23V9lChoBmgJaA9DCOZZSSu+Ife/lIaUUpRoFUsyaBZHQJsTkPxx1gZ1fZQoaAZoCWgPQwgqxCPx8nT2v5SGlFKUaBVLMmgWR0CbE1nYxtYTdX2UKGgGaAloD0MIf4Y3a/BeA8CUhpRSlGgVSzJoFkdAmxMZtBOYY3V9lChoBmgJaA9DCD53gv3X+fi/lIaUUpRoFUsyaBZHQJsS2/Dcdo51fZQoaAZoCWgPQwhuNeuM70sJwJSGlFKUaBVLMmgWR0CbFDepXIU8dX2UKGgGaAloD0MI7DL8pxvIAcCUhpRSlGgVSzJoFkdAmxQAm/nGKnV9lChoBmgJaA9DCKHXn8Tnjvq/lIaUUpRoFUsyaBZHQJsTwHnlnyx1fZQoaAZoCWgPQwiTUzvD1NYDwJSGlFKUaBVLMmgWR0CbE4K8tf5UdX2UKGgGaAloD0MIz/boDfexCMCUhpRSlGgVSzJoFkdAmxTcJ6Y3N3V9lChoBmgJaA9DCNpZ9E4F/ATAlIaUUpRoFUsyaBZHQJsUpRiw0O51fZQoaAZoCWgPQwhskh/xKzYHwJSGlFKUaBVLMmgWR0CbFGTuv2XcdX2UKGgGaAloD0MIER5tHLE2C8CUhpRSlGgVSzJoFkdAmxQnJHRTj3V9lChoBmgJaA9DCA+0AkNWdwPAlIaUUpRoFUsyaBZHQJsViPdVNpN1fZQoaAZoCWgPQwhXz0nvG38AwJSGlFKUaBVLMmgWR0CbFVIAOrhjdX2UKGgGaAloD0MID4EjgQYb/7+UhpRSlGgVSzJoFkdAmxUR1LamGnV9lChoBmgJaA9DCNGvrZ/+kwTAlIaUUpRoFUsyaBZHQJsU1A3T/hl1fZQoaAZoCWgPQwjiPJzAdBoDwJSGlFKUaBVLMmgWR0CbFifvWpZPdX2UKGgGaAloD0MIiGcJMgKq9r+UhpRSlGgVSzJoFkdAmxXw1WKdhHV9lChoBmgJaA9DCML2kzE+TP6/lIaUUpRoFUsyaBZHQJsVsKkVN6B1fZQoaAZoCWgPQwixTSoaa18AwJSGlFKUaBVLMmgWR0CbFXLofSx8dX2UKGgGaAloD0MIlGjJ42n5+r+UhpRSlGgVSzJoFkdAmxbF5a/yoXV9lChoBmgJaA9DCHKG4o43efu/lIaUUpRoFUsyaBZHQJsWjsNUfgd1fZQoaAZoCWgPQwjBrbt5qkMHwJSGlFKUaBVLMmgWR0CbFk6Ymb9ZdX2UKGgGaAloD0MIFVYqqKhaAsCUhpRSlGgVSzJoFkdAmxYQ4sEq2HV9lChoBmgJaA9DCEa0HVN35QHAlIaUUpRoFUsyaBZHQJsXZ1q33Ht1fZQoaAZoCWgPQwijyjDuBpEDwJSGlFKUaBVLMmgWR0CbFzA4GUwBdX2UKGgGaAloD0MIhPOpY5XS+r+UhpRSlGgVSzJoFkdAmxbwK0D2anV9lChoBmgJaA9DCLzP8dHiLADAlIaUUpRoFUsyaBZHQJsWspAlfJF1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7f6ec4ef98d995638093b459bd8f160d85506b27065e123f680b0193e7ab898
|
3 |
+
size 44542
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb29dee14358c066215702b7b93255fbd8850472268bd772ddf2d3cb96a2fefa
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-12.1-arm64-arm-64bit Darwin Kernel Version 21.2.0: Sun Nov 28 20:28:41 PST 2021; root:xnu-8019.61.5~1/RELEASE_ARM64_T6000
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.11.0
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x16dca0dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x16dca1740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684839206049276000, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9Vc2Vycy9sZW5uYXJ0L21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL1VzZXJzL2xlbm5hcnQvbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkiHDPlFQ77zm3RQ/kiHDPlFQ77zm3RQ/kiHDPlFQ77zm3RQ/kiHDPlFQ77zm3RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABuUCP9AJDb4myhY/1E8MP9j7Lb3eq9O/5/rJv2WcjT/exYW/Y4CAvfW/uT5k/S4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSIcM+UVDvvObdFD+BNvE7qysUu4398TuSIcM+UVDvvObdFD+BNvE7qysUu4398TuSIcM+UVDvvObdFD+BNvE7qysUu4398TuSIcM+UVDvvObdFD+BNvE7qysUu4398TuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3811155 -0.0292131 0.5815109]\n [ 0.3811155 -0.0292131 0.5815109]\n [ 0.3811155 -0.0292131 0.5815109]\n [ 0.3811155 -0.0292131 0.5815109]]", "desired_goal": "[[ 0.5113071 -0.13773274 0.58902204]\n [ 0.5480931 -0.04247651 -1.6536825 ]\n [-1.5779694 1.1063353 -1.0451009 ]\n [-0.06274488 0.36279264 0.68355393]]", "observation": "[[ 0.3811155 -0.0292131 0.5815109 0.00736123 -0.0022609 0.00738496]\n [ 0.3811155 -0.0292131 0.5815109 0.00736123 -0.0022609 0.00738496]\n [ 0.3811155 -0.0292131 0.5815109 0.00736123 -0.0022609 0.00738496]\n [ 0.3811155 -0.0292131 0.5815109 0.00736123 -0.0022609 0.00738496]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+6nIdPZ1qGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1lHwPPIGvz2XNhE+pvwzvbZYXL08IGs+1vsIvkM+xT2rwxc96IXfvWCVfr2eBL09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAADqch09nWoarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0293359 0.09327497 0.1418098 ]\n [-0.04394212 -0.05379554 0.22961515]\n [-0.13377318 0.09631016 0.03705184]\n [-0.10914212 -0.06215417 0.09229396]]", "observation": "[[ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1943899e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0qqWdJQDAMCUhpRSlIwBbJRLMowBdJRHQJsIGfL9uP51fZQoaAZoCWgPQwgv3/qw3ggIwJSGlFKUaBVLMmgWR0CbB+LmZE2HdX2UKGgGaAloD0MIq1/pfHjW/L+UhpRSlGgVSzJoFkdAmwejAWSEDnV9lChoBmgJaA9DCCBB8WPM/QHAlIaUUpRoFUsyaBZHQJsHZWcSXdF1fZQoaAZoCWgPQwgtlExO7Uzxv5SGlFKUaBVLMmgWR0CbCMXXiBGydX2UKGgGaAloD0MIlZ1+UBepAsCUhpRSlGgVSzJoFkdAmwiO+mFajnV9lChoBmgJaA9DCMbAOo4fKvi/lIaUUpRoFUsyaBZHQJsITt5UtI11fZQoaAZoCWgPQwguBDkoYcYBwJSGlFKUaBVLMmgWR0CbCBETQE6ldX2UKGgGaAloD0MIiQyreCMz+L+UhpRSlGgVSzJoFkdAmwlmt6ol2XV9lChoBmgJaA9DCBhBYyZRr++/lIaUUpRoFUsyaBZHQJsJL5N47ih1fZQoaAZoCWgPQwiU2/Y96i8BwJSGlFKUaBVLMmgWR0CbCO9ycTakdX2UKGgGaAloD0MIdChDVUwl/b+UhpRSlGgVSzJoFkdAmwixr8BMjHV9lChoBmgJaA9DCAHChxItGQTAlIaUUpRoFUsyaBZHQJsKCv0RODd1fZQoaAZoCWgPQwj/kenQ6XkDwJSGlFKUaBVLMmgWR0CbCdPuogmrdX2UKGgGaAloD0MIhSf0+pN4+L+UhpRSlGgVSzJoFkdAmwmTyOJcgXV9lChoBmgJaA9DCHO9baZC/Pm/lIaUUpRoFUsyaBZHQJsJViWmgrZ1fZQoaAZoCWgPQwgS3EjZIkkDwJSGlFKUaBVLMmgWR0CbCqxG2CumdX2UKGgGaAloD0MIuQA0SpceA8CUhpRSlGgVSzJoFkdAmwp1SOzY3HV9lChoBmgJaA9DCOEmo8owLvy/lIaUUpRoFUsyaBZHQJsKNT5wfhd1fZQoaAZoCWgPQwhOe0rOiV0AwJSGlFKUaBVLMmgWR0CbCffE4vOAdX2UKGgGaAloD0MIIos08Q4w/L+UhpRSlGgVSzJoFkdAmwtZuMuOCHV9lChoBmgJaA9DCB7BjZQtUv2/lIaUUpRoFUsyaBZHQJsLIqDsdDJ1fZQoaAZoCWgPQwj/IJIhxxb2v5SGlFKUaBVLMmgWR0CbCuJzDGcXdX2UKGgGaAloD0MIc9U8R+T7/r+UhpRSlGgVSzJoFkdAmwqlSGahH3V9lChoBmgJaA9DCFjjbDoCuPu/lIaUUpRoFUsyaBZHQJsMAvtdAxB1fZQoaAZoCWgPQwithO6SOEsDwJSGlFKUaBVLMmgWR0CbC8vs7dSEdX2UKGgGaAloD0MIUiy3tBpS+b+UhpRSlGgVSzJoFkdAmwuL1EmY0HV9lChoBmgJaA9DCEJ3SZwV0f2/lIaUUpRoFUsyaBZHQJsLTjR2KVJ1fZQoaAZoCWgPQwi21hcJbXn0v5SGlFKUaBVLMmgWR0CbDKRQ79ycdX2UKGgGaAloD0MI76gxIeYSBsCUhpRSlGgVSzJoFkdAmwxtL6DXe3V9lChoBmgJaA9DCNVA8zl3+/i/lIaUUpRoFUsyaBZHQJsMLP6be/J1fZQoaAZoCWgPQwg1C7Q7pNjzv5SGlFKUaBVLMmgWR0CbC+9Brvb5dX2UKGgGaAloD0MI71nXaDmwA8CUhpRSlGgVSzJoFkdAmw1HG0eEI3V9lChoBmgJaA9DCHJO7KF9bPy/lIaUUpRoFUsyaBZHQJsND/zasZJ1fZQoaAZoCWgPQwhhxanWwqzzv5SGlFKUaBVLMmgWR0CbDM/0NBnjdX2UKGgGaAloD0MIq5LIPsiy97+UhpRSlGgVSzJoFkdAmwySNsFdLXV9lChoBmgJaA9DCKkvSzs1F/q/lIaUUpRoFUsyaBZHQJsN6uB+Wnl1fZQoaAZoCWgPQwj7kSIyrOLzv5SGlFKUaBVLMmgWR0CbDbPI4lyBdX2UKGgGaAloD0MIn+dPG9XJA8CUhpRSlGgVSzJoFkdAmw1zm0VrRHV9lChoBmgJaA9DCGJKJNHL6Pi/lIaUUpRoFUsyaBZHQJsNNdv863l1fZQoaAZoCWgPQwgH0sWmlUL3v5SGlFKUaBVLMmgWR0CbDowxnFo+dX2UKGgGaAloD0MIICdMGM1K97+UhpRSlGgVSzJoFkdAmw5VFQVKw3V9lChoBmgJaA9DCLnGZ7J/nvy/lIaUUpRoFUsyaBZHQJsOFO1v2oN1fZQoaAZoCWgPQwiunSgJifTzv5SGlFKUaBVLMmgWR0CbDdcv/R3NdX2UKGgGaAloD0MIx4Ds9e6PBMCUhpRSlGgVSzJoFkdAmw8xHoX9BXV9lChoBmgJaA9DCEfLgR5qm/S/lIaUUpRoFUsyaBZHQJsO+hWYF7l1fZQoaAZoCWgPQwgeiCzSxLsBwJSGlFKUaBVLMmgWR0CbDrnp0OmSdX2UKGgGaAloD0MIPggB+RJq9r+UhpRSlGgVSzJoFkdAmw58PvrnknV9lChoBmgJaA9DCLn98smK4fm/lIaUUpRoFUsyaBZHQJsPzhgmZ3N1fZQoaAZoCWgPQwhv1uB9Va4BwJSGlFKUaBVLMmgWR0CbD5b0e2d/dX2UKGgGaAloD0MIPUM4ZtmT+b+UhpRSlGgVSzJoFkdAmw9W9DhLoXV9lChoBmgJaA9DCAtBDkqYSQHAlIaUUpRoFUsyaBZHQJsPGUkfLcN1fZQoaAZoCWgPQwiNDkjCvv0FwJSGlFKUaBVLMmgWR0CbEHDvVmSRdX2UKGgGaAloD0MIVBwHXi23/7+UhpRSlGgVSzJoFkdAmxA5zkp7TnV9lChoBmgJaA9DCKw41VqYxQDAlIaUUpRoFUsyaBZHQJsP+cI7eVN1fZQoaAZoCWgPQwjDZRU2A9z+v5SGlFKUaBVLMmgWR0CbD7wX668QdX2UKGgGaAloD0MI6StIMxZN9r+UhpRSlGgVSzJoFkdAmxEQEIPbwnV9lChoBmgJaA9DCHeiJCTSNvm/lIaUUpRoFUsyaBZHQJsQ2PMjeKt1fZQoaAZoCWgPQwj8j0yHTq8JwJSGlFKUaBVLMmgWR0CbEJjASFoMdX2UKGgGaAloD0MIwocSLXl8+r+UhpRSlGgVSzJoFkdAmxBa+i8Fp3V9lChoBmgJaA9DCGstzEI75/m/lIaUUpRoFUsyaBZHQJsRsYDTz/Z1fZQoaAZoCWgPQwiUMqmhDUAEwJSGlFKUaBVLMmgWR0CbEXpeeFtbdX2UKGgGaAloD0MIFy1A22o2AcCUhpRSlGgVSzJoFkdAmxE6MFUyYXV9lChoBmgJaA9DCJTcYROZOfy/lIaUUpRoFUsyaBZHQJsQ/Ho5ggJ1fZQoaAZoCWgPQwiS5o9pbToDwJSGlFKUaBVLMmgWR0CbElL9uP3jdX2UKGgGaAloD0MIh/nyAuzj+b+UhpRSlGgVSzJoFkdAmxIb212JSHV9lChoBmgJaA9DCILGTKJe8Pe/lIaUUpRoFUsyaBZHQJsR26tknTl1fZQoaAZoCWgPQwj75v7qcd/4v5SGlFKUaBVLMmgWR0CbEZ3solUqdX2UKGgGaAloD0MIuFz92CTfAMCUhpRSlGgVSzJoFkdAmxL1SwW30HV9lChoBmgJaA9DCMqHoGr0KgbAlIaUUpRoFUsyaBZHQJsSvibUgB91fZQoaAZoCWgPQwjg2LPnMpUCwJSGlFKUaBVLMmgWR0CbEn336AOKdX2UKGgGaAloD0MIGCe+2lFc/L+UhpRSlGgVSzJoFkdAmxJARGtp23V9lChoBmgJaA9DCOZZSSu+Ife/lIaUUpRoFUsyaBZHQJsTkPxx1gZ1fZQoaAZoCWgPQwgqxCPx8nT2v5SGlFKUaBVLMmgWR0CbE1nYxtYTdX2UKGgGaAloD0MIf4Y3a/BeA8CUhpRSlGgVSzJoFkdAmxMZtBOYY3V9lChoBmgJaA9DCD53gv3X+fi/lIaUUpRoFUsyaBZHQJsS2/Dcdo51fZQoaAZoCWgPQwhuNeuM70sJwJSGlFKUaBVLMmgWR0CbFDepXIU8dX2UKGgGaAloD0MI7DL8pxvIAcCUhpRSlGgVSzJoFkdAmxQAm/nGKnV9lChoBmgJaA9DCKHXn8Tnjvq/lIaUUpRoFUsyaBZHQJsTwHnlnyx1fZQoaAZoCWgPQwiTUzvD1NYDwJSGlFKUaBVLMmgWR0CbE4K8tf5UdX2UKGgGaAloD0MIz/boDfexCMCUhpRSlGgVSzJoFkdAmxTcJ6Y3N3V9lChoBmgJaA9DCNpZ9E4F/ATAlIaUUpRoFUsyaBZHQJsUpRiw0O51fZQoaAZoCWgPQwhskh/xKzYHwJSGlFKUaBVLMmgWR0CbFGTuv2XcdX2UKGgGaAloD0MIER5tHLE2C8CUhpRSlGgVSzJoFkdAmxQnJHRTj3V9lChoBmgJaA9DCA+0AkNWdwPAlIaUUpRoFUsyaBZHQJsViPdVNpN1fZQoaAZoCWgPQwhXz0nvG38AwJSGlFKUaBVLMmgWR0CbFVIAOrhjdX2UKGgGaAloD0MID4EjgQYb/7+UhpRSlGgVSzJoFkdAmxUR1LamGnV9lChoBmgJaA9DCNGvrZ/+kwTAlIaUUpRoFUsyaBZHQJsU1A3T/hl1fZQoaAZoCWgPQwjiPJzAdBoDwJSGlFKUaBVLMmgWR0CbFifvWpZPdX2UKGgGaAloD0MIiGcJMgKq9r+UhpRSlGgVSzJoFkdAmxXw1WKdhHV9lChoBmgJaA9DCML2kzE+TP6/lIaUUpRoFUsyaBZHQJsVsKkVN6B1fZQoaAZoCWgPQwixTSoaa18AwJSGlFKUaBVLMmgWR0CbFXLofSx8dX2UKGgGaAloD0MIlGjJ42n5+r+UhpRSlGgVSzJoFkdAmxbF5a/yoXV9lChoBmgJaA9DCHKG4o43efu/lIaUUpRoFUsyaBZHQJsWjsNUfgd1fZQoaAZoCWgPQwjBrbt5qkMHwJSGlFKUaBVLMmgWR0CbFk6Ymb9ZdX2UKGgGaAloD0MIFVYqqKhaAsCUhpRSlGgVSzJoFkdAmxYQ4sEq2HV9lChoBmgJaA9DCEa0HVN35QHAlIaUUpRoFUsyaBZHQJsXZ1q33Ht1fZQoaAZoCWgPQwijyjDuBpEDwJSGlFKUaBVLMmgWR0CbFzA4GUwBdX2UKGgGaAloD0MIhPOpY5XS+r+UhpRSlGgVSzJoFkdAmxbwK0D2anV9lChoBmgJaA9DCLzP8dHiLADAlIaUUpRoFUsyaBZHQJsWspAlfJF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "macOS-12.1-arm64-arm-64bit Darwin Kernel Version 21.2.0: Sun Nov 28 20:28:41 PST 2021; root:xnu-8019.61.5~1/RELEASE_ARM64_T6000", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (767 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.1348243453074245, "std_reward": 0.29710343778687376, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-23T14:25:32.100149"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71043f774ce7851c6e9db173fb589bfffcb0fd2f91ac1ba90b2b9f47ded2b0d3
|
3 |
+
size 2381
|