Leo1212 commited on
Commit
49bebc3
1 Parent(s): 6fa7284

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/longformer-base-4096
3
+ datasets:
4
+ - sentence-transformers/all-nli
5
+ - sentence-transformers/stsb
6
+ - sentence-transformers/quora-duplicates
7
+ - sentence-transformers/natural-questions
8
+ language:
9
+ - en
10
+ library_name: sentence-transformers
11
+ pipeline_tag: sentence-similarity
12
+ tags:
13
+ - sentence-transformers
14
+ - sentence-similarity
15
+ - feature-extraction
16
+ - generated_from_trainer
17
+ - dataset_size:65749
18
+ - loss:MultipleNegativesRankingLoss
19
+ - loss:SoftmaxLoss
20
+ - loss:CoSENTLoss
21
+ widget:
22
+ - source_sentence: Can a US President destroy a city with actions?
23
+ sentences:
24
+ - What are best kids educational games?
25
+ - Can a US president destroy a city through actions?
26
+ - Why do people ask questions on Quora that are just as, if not more than easier
27
+ to, look up with a search engine?
28
+ - source_sentence: How would you handle stress people?
29
+ sentences:
30
+ - How do I handle stress with a parent?
31
+ - Why do some people on QUORA ask questions that they can easily findout on Google?
32
+ - How do I make a quick right decision?
33
+ - source_sentence: Two women playing field hockey on AstroTurf.
34
+ sentences:
35
+ - Women playing a game of field hockey.
36
+ - The children are outside.
37
+ - Women re-sod a field hockey field.
38
+ - source_sentence: A dog reaches to catch a ball with its mouth.
39
+ sentences:
40
+ - The dog is playing with a rope.
41
+ - The dog is playing with a ball.
42
+ - Someone holding their baby is smiling while sitting down.
43
+ - source_sentence: There is a very full description of the various types of hormone
44
+ rooting compound here.
45
+ sentences:
46
+ - The least that can be said is that we must be born with the ability and 'knowledge'
47
+ to learn.
48
+ - It is meant to stimulate root growth - in particular to stimulate the creation
49
+ of roots.
50
+ - A person folds a piece of paper.
51
+ ---
52
+
53
+ # SentenceTransformer based on allenai/longformer-base-4096
54
+
55
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the [all-nli-pair](https://huggingface.co/datasets/sentence-transformers/all-nli), [all-nli-pair-class](https://huggingface.co/datasets/sentence-transformers/all-nli), [all-nli-pair-score](https://huggingface.co/datasets/sentence-transformers/all-nli), [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli), [stsb](https://huggingface.co/datasets/sentence-transformers/stsb), [quora](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** Sentence Transformer
61
+ - **Base model:** [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) <!-- at revision 301e6a42cb0d9976a6d6a26a079fef81c18aa895 -->
62
+ - **Maximum Sequence Length:** 4098 tokens
63
+ - **Output Dimensionality:** 768 tokens
64
+ - **Similarity Function:** Cosine Similarity
65
+ - **Training Datasets:**
66
+ - [all-nli-pair](https://huggingface.co/datasets/sentence-transformers/all-nli)
67
+ - [all-nli-pair-class](https://huggingface.co/datasets/sentence-transformers/all-nli)
68
+ - [all-nli-pair-score](https://huggingface.co/datasets/sentence-transformers/all-nli)
69
+ - [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli)
70
+ - [stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
71
+ - [quora](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
72
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
73
+ - **Language:** en
74
+ <!-- - **License:** Unknown -->
75
+
76
+ ### Model Sources
77
+
78
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
79
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
80
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
81
+
82
+ ### Full Model Architecture
83
+
84
+ ```
85
+ SentenceTransformer(
86
+ (0): Transformer({'max_seq_length': 4098, 'do_lower_case': False}) with Transformer model: LongformerModel
87
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
88
+ )
89
+ ```
90
+
91
+ ## Usage
92
+
93
+ ### Direct Usage (Sentence Transformers)
94
+
95
+ First install the Sentence Transformers library:
96
+
97
+ ```bash
98
+ pip install -U sentence-transformers
99
+ ```
100
+
101
+ Then you can load this model and run inference.
102
+ ```python
103
+ from sentence_transformers import SentenceTransformer
104
+
105
+ # Download from the 🤗 Hub
106
+ model = SentenceTransformer("Leo1212/longformer-base-4096-sentence-transformers-best")
107
+ # Run inference
108
+ sentences = [
109
+ 'There is a very full description of the various types of hormone rooting compound here.',
110
+ 'It is meant to stimulate root growth - in particular to stimulate the creation of roots.',
111
+ "The least that can be said is that we must be born with the ability and 'knowledge' to learn.",
112
+ ]
113
+ embeddings = model.encode(sentences)
114
+ print(embeddings.shape)
115
+ # [3, 768]
116
+
117
+ # Get the similarity scores for the embeddings
118
+ similarities = model.similarity(embeddings, embeddings)
119
+ print(similarities.shape)
120
+ # [3, 3]
121
+ ```
122
+
123
+ <!--
124
+ ### Direct Usage (Transformers)
125
+
126
+ <details><summary>Click to see the direct usage in Transformers</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Downstream Usage (Sentence Transformers)
133
+
134
+ You can finetune this model on your own dataset.
135
+
136
+ <details><summary>Click to expand</summary>
137
+
138
+ </details>
139
+ -->
140
+
141
+ <!--
142
+ ### Out-of-Scope Use
143
+
144
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
145
+ -->
146
+
147
+ <!--
148
+ ## Bias, Risks and Limitations
149
+
150
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
151
+ -->
152
+
153
+ <!--
154
+ ### Recommendations
155
+
156
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
157
+ -->
158
+
159
+ ## Training Details
160
+
161
+ ### Training Datasets
162
+
163
+ #### all-nli-pair
164
+
165
+ * Dataset: [all-nli-pair](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
166
+ * Size: 10,000 training samples
167
+ * Columns: <code>anchor</code> and <code>positive</code>
168
+ * Approximate statistics based on the first 1000 samples:
169
+ | | anchor | positive |
170
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
171
+ | type | string | string |
172
+ | details | <ul><li>min: 5 tokens</li><li>mean: 17.06 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.64 tokens</li><li>max: 31 tokens</li></ul> |
173
+ * Samples:
174
+ | anchor | positive |
175
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|
176
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> |
177
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> |
178
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> |
179
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
180
+ ```json
181
+ {
182
+ "scale": 20.0,
183
+ "similarity_fct": "cos_sim"
184
+ }
185
+ ```
186
+
187
+ #### all-nli-pair-class
188
+
189
+ * Dataset: [all-nli-pair-class](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
190
+ * Size: 10,000 training samples
191
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
192
+ * Approximate statistics based on the first 1000 samples:
193
+ | | premise | hypothesis | label |
194
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
195
+ | type | string | string | int |
196
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.4 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.69 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
197
+ * Samples:
198
+ | premise | hypothesis | label |
199
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
200
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
201
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
202
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
203
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
204
+
205
+ #### all-nli-pair-score
206
+
207
+ * Dataset: [all-nli-pair-score](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
208
+ * Size: 10,000 training samples
209
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
210
+ * Approximate statistics based on the first 1000 samples:
211
+ | | sentence1 | sentence2 | score |
212
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
213
+ | type | string | string | float |
214
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.4 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.69 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
215
+ * Samples:
216
+ | sentence1 | sentence2 | score |
217
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:-----------------|
218
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>0.5</code> |
219
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>0.0</code> |
220
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>1.0</code> |
221
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
222
+ ```json
223
+ {
224
+ "scale": 20.0,
225
+ "similarity_fct": "pairwise_cos_sim"
226
+ }
227
+ ```
228
+
229
+ #### all-nli-triplet
230
+
231
+ * Dataset: [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
232
+ * Size: 10,000 training samples
233
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
234
+ * Approximate statistics based on the first 1000 samples:
235
+ | | anchor | positive | negative |
236
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
237
+ | type | string | string | string |
238
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
239
+ * Samples:
240
+ | anchor | positive | negative |
241
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
242
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
243
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
244
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
245
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
246
+ ```json
247
+ {
248
+ "scale": 20.0,
249
+ "similarity_fct": "cos_sim"
250
+ }
251
+ ```
252
+
253
+ #### stsb
254
+
255
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
256
+ * Size: 5,749 training samples
257
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
258
+ * Approximate statistics based on the first 1000 samples:
259
+ | | sentence1 | sentence2 | score |
260
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
261
+ | type | string | string | float |
262
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.02 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 9.96 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
263
+ * Samples:
264
+ | sentence1 | sentence2 | score |
265
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
266
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
267
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
268
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
269
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
270
+ ```json
271
+ {
272
+ "scale": 20.0,
273
+ "similarity_fct": "pairwise_cos_sim"
274
+ }
275
+ ```
276
+
277
+ #### quora
278
+
279
+ * Dataset: [quora](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
280
+ * Size: 10,000 training samples
281
+ * Columns: <code>anchor</code> and <code>positive</code>
282
+ * Approximate statistics based on the first 1000 samples:
283
+ | | anchor | positive |
284
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
285
+ | type | string | string |
286
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.74 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.91 tokens</li><li>max: 44 tokens</li></ul> |
287
+ * Samples:
288
+ | anchor | positive |
289
+ |:----------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
290
+ | <code>Astrology: I am a Capricorn Sun Cap moon and cap rising...what does that say about me?</code> | <code>I'm a triple Capricorn (Sun, Moon and ascendant in Capricorn) What does this say about me?</code> |
291
+ | <code>How can I be a good geologist?</code> | <code>What should I do to be a great geologist?</code> |
292
+ | <code>How do I read and find my YouTube comments?</code> | <code>How can I see all my Youtube comments?</code> |
293
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
294
+ ```json
295
+ {
296
+ "scale": 20.0,
297
+ "similarity_fct": "cos_sim"
298
+ }
299
+ ```
300
+
301
+ #### natural-questions
302
+
303
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
304
+ * Size: 10,000 training samples
305
+ * Columns: <code>query</code> and <code>answer</code>
306
+ * Approximate statistics based on the first 1000 samples:
307
+ | | query | answer |
308
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
309
+ | type | string | string |
310
+ | details | <ul><li>min: 10 tokens</li><li>mean: 12.43 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 136.19 tokens</li><li>max: 543 tokens</li></ul> |
311
+ * Samples:
312
+ | query | answer |
313
+ |:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
314
+ | <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tigers took over the game as it progressed and scored seven straight goals at one point. They eventually would win by 48 points – 16.12 (108) to Adelaide's 8.12 (60) – to end their 37-year flag drought.[22] Dustin Martin also became the first player to win a Premiership medal, the Brownlow Medal and the Norm Smith Medal in the same season, while Damien Hardwick was named AFL Coaches Association Coach of the Year. Richmond's jump from 13th to premiers also marked the biggest jump from one AFL season to the next.</code> |
315
+ | <code>who sang what in the world's come over you</code> | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code> |
316
+ | <code>who produces the most wool in the world</code> | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code> |
317
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
318
+ ```json
319
+ {
320
+ "scale": 20.0,
321
+ "similarity_fct": "cos_sim"
322
+ }
323
+ ```
324
+
325
+ ### Evaluation Datasets
326
+
327
+ #### all-nli-triplet
328
+
329
+ * Dataset: [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
330
+ * Size: 6,584 evaluation samples
331
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
332
+ * Approximate statistics based on the first 1000 samples:
333
+ | | anchor | positive | negative |
334
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
335
+ | type | string | string | string |
336
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> |
337
+ * Samples:
338
+ | anchor | positive | negative |
339
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
340
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
341
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
342
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
343
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
344
+ ```json
345
+ {
346
+ "scale": 20.0,
347
+ "similarity_fct": "cos_sim"
348
+ }
349
+ ```
350
+
351
+ #### stsb
352
+
353
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
354
+ * Size: 1,500 evaluation samples
355
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
356
+ * Approximate statistics based on the first 1000 samples:
357
+ | | sentence1 | sentence2 | score |
358
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
359
+ | type | string | string | float |
360
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.0 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.99 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
361
+ * Samples:
362
+ | sentence1 | sentence2 | score |
363
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
364
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
365
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
366
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
367
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
368
+ ```json
369
+ {
370
+ "scale": 20.0,
371
+ "similarity_fct": "pairwise_cos_sim"
372
+ }
373
+ ```
374
+
375
+ #### quora
376
+
377
+ * Dataset: [quora](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
378
+ * Size: 1,000 evaluation samples
379
+ * Columns: <code>anchor</code> and <code>positive</code>
380
+ * Approximate statistics based on the first 1000 samples:
381
+ | | anchor | positive |
382
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
383
+ | type | string | string |
384
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.86 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.9 tokens</li><li>max: 46 tokens</li></ul> |
385
+ * Samples:
386
+ | anchor | positive |
387
+ |:----------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
388
+ | <code>What is your New Year resolution?</code> | <code>What can be my new year resolution for 2017?</code> |
389
+ | <code>Should I buy the IPhone 6s or Samsung Galaxy s7?</code> | <code>Which is better: the iPhone 6S Plus or the Samsung Galaxy S7 Edge?</code> |
390
+ | <code>What are the differences between transgression and regression?</code> | <code>What is the difference between transgression and regression?</code> |
391
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
392
+ ```json
393
+ {
394
+ "scale": 20.0,
395
+ "similarity_fct": "cos_sim"
396
+ }
397
+ ```
398
+
399
+ #### natural-questions
400
+
401
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
402
+ * Size: 1,000 evaluation samples
403
+ * Columns: <code>query</code> and <code>answer</code>
404
+ * Approximate statistics based on the first 1000 samples:
405
+ | | query | answer |
406
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
407
+ | type | string | string |
408
+ | details | <ul><li>min: 9 tokens</li><li>mean: 12.47 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 139.05 tokens</li><li>max: 572 tokens</li></ul> |
409
+ * Samples:
410
+ | query | answer |
411
+ |:--------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
412
+ | <code>where does the waikato river begin and end</code> | <code>Waikato River The Waikato River is the longest river in New Zealand, running for 425 kilometres (264 mi) through the North Island. It rises in the eastern slopes of Mount Ruapehu, joining the Tongariro River system and flowing through Lake Taupo, New Zealand's largest lake. It then drains Taupo at the lake's northeastern edge, creates the Huka Falls, and flows northwest through the Waikato Plains. It empties into the Tasman Sea south of Auckland, at Port Waikato. It gives its name to the Waikato Region that surrounds the Waikato Plains. The present course of the river was largely formed about 17,000 years ago. Contributing factors were climate warming, forest being reestablished in the river headwaters and the deepening, rather than widening, of the existing river channel. The channel was gradually eroded as far up river as Piarere, leaving the old Hinuera channel high and dry.[2] The remains of the old river path can be clearly seen at Hinuera where the cliffs mark the ancient river edges. The river's main tributary is the Waipa River, which has its confluence with the Waikato at Ngaruawahia.</code> |
413
+ | <code>what type of gas is produced during fermentation</code> | <code>Fermentation Fermentation reacts NADH with an endogenous, organic electron acceptor.[1] Usually this is pyruvate formed from sugar through glycolysis. The reaction produces NAD+ and an organic product, typical examples being ethanol, lactic acid, carbon dioxide, and hydrogen gas (H2). However, more exotic compounds can be produced by fermentation, such as butyric acid and acetone. Fermentation products contain chemical energy (they are not fully oxidized), but are considered waste products, since they cannot be metabolized further without the use of oxygen.</code> |
414
+ | <code>why was star wars episode iv released first</code> | <code>Star Wars (film) Star Wars (later retitled Star Wars: Episode IV – A New Hope) is a 1977 American epic space opera film written and directed by George Lucas. It is the first film in the original Star Wars trilogy and the beginning of the Star Wars franchise. Starring Mark Hamill, Harrison Ford, Carrie Fisher, Peter Cushing, Alec Guinness, David Prowse, James Earl Jones, Anthony Daniels, Kenny Baker, and Peter Mayhew, the film's plot focuses on the Rebel Alliance, led by Princess Leia (Fisher), and its attempt to destroy the Galactic Empire's space station, the Death Star. This conflict disrupts the isolated life of farmhand Luke Skywalker (Hamill), who inadvertently acquires two droids that possess stolen architectural plans for the Death Star. When the Empire begins a destructive search for the missing droids, Skywalker accompanies Jedi Master Obi-Wan Kenobi (Guinness) on a mission to return the plans to the Rebel Alliance and rescue Leia from her imprisonment by the Empire.</code> |
415
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
416
+ ```json
417
+ {
418
+ "scale": 20.0,
419
+ "similarity_fct": "cos_sim"
420
+ }
421
+ ```
422
+
423
+ ### Training Hyperparameters
424
+ #### Non-Default Hyperparameters
425
+
426
+ - `overwrite_output_dir`: True
427
+ - `eval_strategy`: steps
428
+ - `learning_rate`: 0.00013062710813368267
429
+ - `num_train_epochs`: 10
430
+ - `warmup_steps`: 2
431
+ - `load_best_model_at_end`: True
432
+
433
+ #### All Hyperparameters
434
+ <details><summary>Click to expand</summary>
435
+
436
+ - `overwrite_output_dir`: True
437
+ - `do_predict`: False
438
+ - `eval_strategy`: steps
439
+ - `prediction_loss_only`: True
440
+ - `per_device_train_batch_size`: 8
441
+ - `per_device_eval_batch_size`: 8
442
+ - `per_gpu_train_batch_size`: None
443
+ - `per_gpu_eval_batch_size`: None
444
+ - `gradient_accumulation_steps`: 1
445
+ - `eval_accumulation_steps`: None
446
+ - `torch_empty_cache_steps`: None
447
+ - `learning_rate`: 0.00013062710813368267
448
+ - `weight_decay`: 0.0
449
+ - `adam_beta1`: 0.9
450
+ - `adam_beta2`: 0.999
451
+ - `adam_epsilon`: 1e-08
452
+ - `max_grad_norm`: 1.0
453
+ - `num_train_epochs`: 10
454
+ - `max_steps`: -1
455
+ - `lr_scheduler_type`: linear
456
+ - `lr_scheduler_kwargs`: {}
457
+ - `warmup_ratio`: 0.0
458
+ - `warmup_steps`: 2
459
+ - `log_level`: passive
460
+ - `log_level_replica`: warning
461
+ - `log_on_each_node`: True
462
+ - `logging_nan_inf_filter`: True
463
+ - `save_safetensors`: True
464
+ - `save_on_each_node`: False
465
+ - `save_only_model`: False
466
+ - `restore_callback_states_from_checkpoint`: False
467
+ - `no_cuda`: False
468
+ - `use_cpu`: False
469
+ - `use_mps_device`: False
470
+ - `seed`: 42
471
+ - `data_seed`: None
472
+ - `jit_mode_eval`: False
473
+ - `use_ipex`: False
474
+ - `bf16`: False
475
+ - `fp16`: False
476
+ - `fp16_opt_level`: O1
477
+ - `half_precision_backend`: auto
478
+ - `bf16_full_eval`: False
479
+ - `fp16_full_eval`: False
480
+ - `tf32`: None
481
+ - `local_rank`: 0
482
+ - `ddp_backend`: None
483
+ - `tpu_num_cores`: None
484
+ - `tpu_metrics_debug`: False
485
+ - `debug`: []
486
+ - `dataloader_drop_last`: False
487
+ - `dataloader_num_workers`: 0
488
+ - `dataloader_prefetch_factor`: None
489
+ - `past_index`: -1
490
+ - `disable_tqdm`: False
491
+ - `remove_unused_columns`: True
492
+ - `label_names`: None
493
+ - `load_best_model_at_end`: True
494
+ - `ignore_data_skip`: False
495
+ - `fsdp`: []
496
+ - `fsdp_min_num_params`: 0
497
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
498
+ - `fsdp_transformer_layer_cls_to_wrap`: None
499
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
500
+ - `deepspeed`: None
501
+ - `label_smoothing_factor`: 0.0
502
+ - `optim`: adamw_torch
503
+ - `optim_args`: None
504
+ - `adafactor`: False
505
+ - `group_by_length`: False
506
+ - `length_column_name`: length
507
+ - `ddp_find_unused_parameters`: None
508
+ - `ddp_bucket_cap_mb`: None
509
+ - `ddp_broadcast_buffers`: False
510
+ - `dataloader_pin_memory`: True
511
+ - `dataloader_persistent_workers`: False
512
+ - `skip_memory_metrics`: True
513
+ - `use_legacy_prediction_loop`: False
514
+ - `push_to_hub`: False
515
+ - `resume_from_checkpoint`: None
516
+ - `hub_model_id`: None
517
+ - `hub_strategy`: every_save
518
+ - `hub_private_repo`: False
519
+ - `hub_always_push`: False
520
+ - `gradient_checkpointing`: False
521
+ - `gradient_checkpointing_kwargs`: None
522
+ - `include_inputs_for_metrics`: False
523
+ - `eval_do_concat_batches`: True
524
+ - `fp16_backend`: auto
525
+ - `push_to_hub_model_id`: None
526
+ - `push_to_hub_organization`: None
527
+ - `mp_parameters`:
528
+ - `auto_find_batch_size`: False
529
+ - `full_determinism`: False
530
+ - `torchdynamo`: None
531
+ - `ray_scope`: last
532
+ - `ddp_timeout`: 1800
533
+ - `torch_compile`: False
534
+ - `torch_compile_backend`: None
535
+ - `torch_compile_mode`: None
536
+ - `dispatch_batches`: None
537
+ - `split_batches`: None
538
+ - `include_tokens_per_second`: False
539
+ - `include_num_input_tokens_seen`: False
540
+ - `neftune_noise_alpha`: None
541
+ - `optim_target_modules`: None
542
+ - `batch_eval_metrics`: False
543
+ - `eval_on_start`: False
544
+ - `use_liger_kernel`: False
545
+ - `eval_use_gather_object`: False
546
+ - `batch_sampler`: batch_sampler
547
+ - `multi_dataset_batch_sampler`: proportional
548
+
549
+ </details>
550
+
551
+ ### Training Logs
552
+ | Epoch | Step | Training Loss |
553
+ |:------:|:----:|:-------------:|
554
+ | 0.0487 | 200 | 3.1178 |
555
+ | 0.0973 | 400 | 3.3828 |
556
+
557
+
558
+ ### Framework Versions
559
+ - Python: 3.11.9
560
+ - Sentence Transformers: 3.1.1
561
+ - Transformers: 4.45.2
562
+ - PyTorch: 2.3.1+cu121
563
+ - Accelerate: 1.0.0
564
+ - Datasets: 3.0.1
565
+ - Tokenizers: 0.20.0
566
+
567
+ ## Citation
568
+
569
+ ### BibTeX
570
+
571
+ #### Sentence Transformers and SoftmaxLoss
572
+ ```bibtex
573
+ @inproceedings{reimers-2019-sentence-bert,
574
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
575
+ author = "Reimers, Nils and Gurevych, Iryna",
576
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
577
+ month = "11",
578
+ year = "2019",
579
+ publisher = "Association for Computational Linguistics",
580
+ url = "https://arxiv.org/abs/1908.10084",
581
+ }
582
+ ```
583
+
584
+ #### MultipleNegativesRankingLoss
585
+ ```bibtex
586
+ @misc{henderson2017efficient,
587
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
588
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
589
+ year={2017},
590
+ eprint={1705.00652},
591
+ archivePrefix={arXiv},
592
+ primaryClass={cs.CL}
593
+ }
594
+ ```
595
+
596
+ #### CoSENTLoss
597
+ ```bibtex
598
+ @online{kexuefm-8847,
599
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
600
+ author={Su Jianlin},
601
+ year={2022},
602
+ month={Jan},
603
+ url={https://kexue.fm/archives/8847},
604
+ }
605
+ ```
606
+
607
+ <!--
608
+ ## Glossary
609
+
610
+ *Clearly define terms in order to be accessible across audiences.*
611
+ -->
612
+
613
+ <!--
614
+ ## Model Card Authors
615
+
616
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
617
+ -->
618
+
619
+ <!--
620
+ ## Model Card Contact
621
+
622
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
623
+ -->
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "allenai/longformer-base-4096",
3
+ "architectures": [
4
+ "LongformerModel"
5
+ ],
6
+ "attention_mode": "longformer",
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "attention_window": [
9
+ 512,
10
+ 512,
11
+ 512,
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512,
19
+ 512,
20
+ 512
21
+ ],
22
+ "bos_token_id": 0,
23
+ "eos_token_id": 2,
24
+ "gradient_checkpointing": false,
25
+ "hidden_act": "gelu",
26
+ "hidden_dropout_prob": 0.1,
27
+ "hidden_size": 768,
28
+ "ignore_attention_mask": false,
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 3072,
31
+ "layer_norm_eps": 1e-05,
32
+ "max_position_embeddings": 4098,
33
+ "model_type": "longformer",
34
+ "num_attention_heads": 12,
35
+ "num_hidden_layers": 12,
36
+ "onnx_export": false,
37
+ "pad_token_id": 1,
38
+ "sep_token_id": 2,
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.45.2",
41
+ "type_vocab_size": 1,
42
+ "vocab_size": 50265
43
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:815de27e596fa325a87578e0a2f7430a374191eb5f2a9b2f6769b6130ab730b1
3
+ size 594668880
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 4098,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 1000000000000000019884624838656,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "LongformerTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff