|
|
|
from tensorflow.keras.models import load_model
|
|
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
|
import pickle
|
|
|
|
model = load_model("model.h5")
|
|
|
|
|
|
with open("tokenizer.pkl","rb") as handle:
|
|
tokenizer = pickle.load(handle)
|
|
|
|
|
|
|
|
while True:
|
|
text = input("write a review, press e to exit: ")
|
|
if text == 'e':
|
|
break
|
|
TokenText = tokenizer.texts_to_sequences([text])
|
|
PadText = pad_sequences(TokenText, maxlen=100)
|
|
Pred = model.predict(PadText)
|
|
Pred_float = Pred[0][0]
|
|
Pred_float *= 1.3
|
|
binary_pred = (Pred_float > 0.5).astype(int)
|
|
if binary_pred == 0:
|
|
print("bad review")
|
|
else:
|
|
print("good review")
|
|
print(Pred_float) |