File size: 2,486 Bytes
6452bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from typing import List

import torch
import torch.nn as nn
from torch import Tensor
from transformers import Wav2Vec2Processor, Wav2Vec2Model

SAMPLE_RATE = 16000


class UpstreamExpert(nn.Module):
    def __init__(self, ckpt: str = None, model_config: str = None, **kwargs):
        super().__init__()

        self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
        self.model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")

    def get_downsample_rates(self, key: str) -> int:
        return 320

    def forward(self, wavs: List[Tensor]):


        wavs_silence = []


        #Total 7 settings

        #original
        wavs_silence = wavs


        #front, 5
        for wav in wavs:
            temp_wav = torch.zeros(len(wav)//5).to(wav.device)
            wavs_silence.append(torch.cat((temp_wav, wav)))

        #front, 10
        for wav in wavs:
            temp_wav = torch.zeros(len(wav)//10).to(wav.device)
            wavs_silence.append(torch.cat((temp_wav, wav)))

        #front, 20
        for wav in wavs:
            temp_wav = torch.zeros(len(wav)//20).to(wav.device)
            wavs_silence.append(torch.cat((temp_wav, wav)))

        #end, 5
        for wav in wavs:
            temp_wav = torch.zeros(len(wav)//5).to(wav.device)
            wavs_silence.append(torch.cat((wav, temp_wav)))

        #end, 10
        for wav in wavs:
            temp_wav = torch.zeros(len(wav)//10).to(wav.device)
            wavs_silence.append(torch.cat((wav, temp_wav)))

        #end, 20
        for wav in wavs:
            temp_wav = torch.zeros(len(wav)//20).to(wav.device)
            wavs_silence.append(torch.cat((wav, temp_wav)))


        wavs = wavs_silence


        device = wavs[0].device

        processor_outputs = self.processor(
            [wav.cpu().numpy() for wav in wavs],
            return_tensors="pt",
            sampling_rate=SAMPLE_RATE,
            padding="longest",
        )
        attention_mask = processor_outputs.get("attention_mask", None)
        if isinstance(attention_mask, torch.Tensor):
            attention_mask = attention_mask.to(device)
        model_outputs = self.model(
            processor_outputs.input_values.to(device),
            attention_mask=attention_mask,
            output_hidden_states=True,
        )
        return {
            "last_hidden_state": model_outputs.last_hidden_state,
            "hidden_states": model_outputs.hidden_states,
        }