File size: 13,019 Bytes
66e1642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_cppe5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/raspuntinov_ai/huggingface/runs/f0sny8se)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/raspuntinov_ai/huggingface/runs/f0sny8se)
# detr_finetuned_cppe5

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2223
- Map: 0.3117
- Map 50: 0.6293
- Map 75: 0.2667
- Map Small: 0.106
- Map Medium: 0.2851
- Map Large: 0.4545
- Mar 1: 0.3195
- Mar 10: 0.4877
- Mar 100: 0.5017
- Mar Small: 0.3298
- Mar Medium: 0.4402
- Mar Large: 0.6375
- Map Coverall: 0.5742
- Mar 100 Coverall: 0.7165
- Map Face Shield: 0.2986
- Mar 100 Face Shield: 0.5309
- Map Gloves: 0.2081
- Mar 100 Gloves: 0.3644
- Map Goggles: 0.1561
- Mar 100 Goggles: 0.4509
- Map Mask: 0.3214
- Mar 100 Mask: 0.4458

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log        | 1.0   | 107  | 2.2632          | 0.0062 | 0.0235 | 0.0011 | 0.0073    | 0.0103     | 0.0113    | 0.0201 | 0.0898 | 0.1405  | 0.1997    | 0.1623     | 0.174     | 0.0017       | 0.0824           | 0.0034          | 0.0471              | 0.0033     | 0.1955         | 0.0037      | 0.0727          | 0.019    | 0.3047       |
| No log        | 2.0   | 214  | 2.0234          | 0.0428 | 0.1012 | 0.0317 | 0.021     | 0.0786     | 0.0501    | 0.1375 | 0.2463 | 0.2875  | 0.2315    | 0.3098     | 0.3033    | 0.1382       | 0.5733           | 0.0104          | 0.1529              | 0.0071     | 0.2379         | 0.0034      | 0.1182          | 0.0549   | 0.3553       |
| No log        | 3.0   | 321  | 1.8733          | 0.0639 | 0.1631 | 0.0411 | 0.0314    | 0.1147     | 0.0873    | 0.1589 | 0.3112 | 0.3549  | 0.2757    | 0.3445     | 0.4228    | 0.168        | 0.6642           | 0.0241          | 0.2309              | 0.0237     | 0.2819         | 0.0083      | 0.2091          | 0.0956   | 0.3884       |
| No log        | 4.0   | 428  | 1.7409          | 0.115  | 0.2879 | 0.0752 | 0.07      | 0.1591     | 0.1481    | 0.1731 | 0.3487 | 0.3892  | 0.3703    | 0.3574     | 0.4902    | 0.276        | 0.617            | 0.0547          | 0.3471              | 0.0586     | 0.3339         | 0.0157      | 0.2436          | 0.17     | 0.4042       |
| 2.0328        | 5.0   | 535  | 1.6217          | 0.1734 | 0.3876 | 0.1395 | 0.1021    | 0.2176     | 0.239     | 0.2162 | 0.4068 | 0.4342  | 0.3228    | 0.3911     | 0.5637    | 0.4173       | 0.6705           | 0.1075          | 0.4059              | 0.0927     | 0.3655         | 0.0222      | 0.3182          | 0.2271   | 0.4111       |
| 2.0328        | 6.0   | 642  | 1.5774          | 0.1806 | 0.4081 | 0.1359 | 0.0693    | 0.1831     | 0.2549    | 0.2169 | 0.3982 | 0.4191  | 0.2609    | 0.3582     | 0.5482    | 0.4468       | 0.6687           | 0.1109          | 0.3926              | 0.0985     | 0.3316         | 0.0344      | 0.3382          | 0.2123   | 0.3642       |
| 2.0328        | 7.0   | 749  | 1.4768          | 0.1974 | 0.4263 | 0.162  | 0.0814    | 0.1819     | 0.3263    | 0.2326 | 0.4013 | 0.4296  | 0.25      | 0.3439     | 0.5935    | 0.4733       | 0.6682           | 0.0929          | 0.3765              | 0.1278     | 0.3458         | 0.0289      | 0.3473          | 0.2641   | 0.4105       |
| 2.0328        | 8.0   | 856  | 1.4344          | 0.2161 | 0.4708 | 0.181  | 0.0699    | 0.2098     | 0.333     | 0.2364 | 0.4117 | 0.4391  | 0.3247    | 0.391      | 0.5775    | 0.5021       | 0.6795           | 0.1504          | 0.4412              | 0.1385     | 0.3209         | 0.0341      | 0.3745          | 0.2553   | 0.3795       |
| 2.0328        | 9.0   | 963  | 1.4459          | 0.2189 | 0.4586 | 0.1836 | 0.1123    | 0.2038     | 0.3322    | 0.2571 | 0.4138 | 0.4358  | 0.3249    | 0.3825     | 0.5595    | 0.4938       | 0.6756           | 0.1193          | 0.4191              | 0.1437     | 0.3401         | 0.0531      | 0.3509          | 0.2845   | 0.3932       |
| 1.4446        | 10.0  | 1070 | 1.3804          | 0.2384 | 0.5297 | 0.1935 | 0.0951    | 0.2296     | 0.3716    | 0.2606 | 0.44   | 0.4664  | 0.2763    | 0.4271     | 0.5924    | 0.5123       | 0.6835           | 0.164           | 0.4794              | 0.193      | 0.3881         | 0.0584      | 0.4018          | 0.2642   | 0.3789       |
| 1.4446        | 11.0  | 1177 | 1.3651          | 0.2451 | 0.532  | 0.191  | 0.144     | 0.2261     | 0.3733    | 0.2756 | 0.4496 | 0.4642  | 0.2983    | 0.3913     | 0.6093    | 0.5158       | 0.7091           | 0.1875          | 0.4956              | 0.1824     | 0.3616         | 0.0623      | 0.3655          | 0.2777   | 0.3895       |
| 1.4446        | 12.0  | 1284 | 1.3426          | 0.2526 | 0.5358 | 0.208  | 0.1033    | 0.2291     | 0.38      | 0.285  | 0.4553 | 0.4771  | 0.281     | 0.4179     | 0.6092    | 0.5401       | 0.692            | 0.2285          | 0.5235              | 0.1492     | 0.3463         | 0.0697      | 0.4164          | 0.2753   | 0.4074       |
| 1.4446        | 13.0  | 1391 | 1.3738          | 0.2444 | 0.5204 | 0.2107 | 0.09      | 0.224      | 0.3802    | 0.2751 | 0.4449 | 0.4625  | 0.3096    | 0.398      | 0.5982    | 0.52         | 0.6835           | 0.1954          | 0.5132              | 0.1721     | 0.3362         | 0.0596      | 0.3655          | 0.2749   | 0.4142       |
| 1.4446        | 14.0  | 1498 | 1.3362          | 0.2562 | 0.5391 | 0.2243 | 0.0838    | 0.2223     | 0.4115    | 0.2789 | 0.4514 | 0.4694  | 0.2657    | 0.4098     | 0.6113    | 0.5536       | 0.6994           | 0.1741          | 0.5                 | 0.1999     | 0.3593         | 0.089       | 0.3982          | 0.2646   | 0.39         |
| 1.2339        | 15.0  | 1605 | 1.2863          | 0.274  | 0.5738 | 0.235  | 0.1041    | 0.2467     | 0.4314    | 0.2953 | 0.4712 | 0.4907  | 0.3404    | 0.4268     | 0.6344    | 0.5423       | 0.7063           | 0.2487          | 0.5147              | 0.1963     | 0.3825         | 0.1043      | 0.4382          | 0.2783   | 0.4121       |
| 1.2339        | 16.0  | 1712 | 1.2890          | 0.2834 | 0.5828 | 0.246  | 0.1031    | 0.2535     | 0.4322    | 0.2994 | 0.4643 | 0.4831  | 0.3513    | 0.4217     | 0.6215    | 0.5515       | 0.6909           | 0.2501          | 0.5103              | 0.2154     | 0.3689         | 0.1029      | 0.4418          | 0.2969   | 0.4037       |
| 1.2339        | 17.0  | 1819 | 1.3175          | 0.2706 | 0.5655 | 0.2381 | 0.096     | 0.2336     | 0.4086    | 0.2952 | 0.4623 | 0.4779  | 0.3177    | 0.4192     | 0.6109    | 0.5271       | 0.6903           | 0.2482          | 0.5044              | 0.1664     | 0.352          | 0.1075      | 0.4309          | 0.3035   | 0.4121       |
| 1.2339        | 18.0  | 1926 | 1.2626          | 0.2851 | 0.5718 | 0.2366 | 0.0902    | 0.2654     | 0.4276    | 0.3093 | 0.4791 | 0.4957  | 0.2848    | 0.443      | 0.6326    | 0.5663       | 0.7091           | 0.2394          | 0.5279              | 0.204      | 0.3701         | 0.1101      | 0.4509          | 0.3058   | 0.4205       |
| 1.0914        | 19.0  | 2033 | 1.2619          | 0.2947 | 0.6021 | 0.2419 | 0.1009    | 0.2725     | 0.4294    | 0.3038 | 0.4833 | 0.4971  | 0.3184    | 0.4445     | 0.6232    | 0.5687       | 0.7017           | 0.2691          | 0.5368              | 0.2063     | 0.365          | 0.1127      | 0.4455          | 0.3169   | 0.4368       |
| 1.0914        | 20.0  | 2140 | 1.2522          | 0.3037 | 0.6086 | 0.2784 | 0.1125    | 0.2678     | 0.4599    | 0.3166 | 0.4787 | 0.4927  | 0.3366    | 0.4307     | 0.6243    | 0.5613       | 0.692            | 0.2928          | 0.5279              | 0.2075     | 0.3695         | 0.1509      | 0.4382          | 0.306    | 0.4358       |
| 1.0914        | 21.0  | 2247 | 1.2523          | 0.3006 | 0.6162 | 0.2592 | 0.1084    | 0.263      | 0.4545    | 0.3158 | 0.4778 | 0.4933  | 0.3353    | 0.4233     | 0.6332    | 0.5636       | 0.6989           | 0.2845          | 0.5162              | 0.1984     | 0.3599         | 0.1427      | 0.4582          | 0.3139   | 0.4332       |
| 1.0914        | 22.0  | 2354 | 1.2415          | 0.3077 | 0.624  | 0.2611 | 0.1393    | 0.2779     | 0.4448    | 0.3182 | 0.4826 | 0.4931  | 0.3503    | 0.426      | 0.6303    | 0.5733       | 0.7063           | 0.2865          | 0.5324              | 0.2076     | 0.3559         | 0.151       | 0.4418          | 0.32     | 0.4289       |
| 1.0914        | 23.0  | 2461 | 1.2369          | 0.306  | 0.6127 | 0.28   | 0.1183    | 0.2778     | 0.4528    | 0.3185 | 0.4812 | 0.4912  | 0.3626    | 0.4312     | 0.6278    | 0.5671       | 0.7017           | 0.2834          | 0.5221              | 0.2051     | 0.3593         | 0.1536      | 0.4309          | 0.3208   | 0.4421       |
| 1.0025        | 24.0  | 2568 | 1.2379          | 0.3076 | 0.6168 | 0.2685 | 0.1043    | 0.2796     | 0.4559    | 0.3191 | 0.4815 | 0.4946  | 0.3321    | 0.4344     | 0.6313    | 0.5695       | 0.7091           | 0.2823          | 0.5221              | 0.2061     | 0.3644         | 0.1542      | 0.4327          | 0.326    | 0.4447       |
| 1.0025        | 25.0  | 2675 | 1.2307          | 0.3139 | 0.6266 | 0.2715 | 0.1157    | 0.2888     | 0.4601    | 0.3206 | 0.4855 | 0.5023  | 0.3389    | 0.4441     | 0.6388    | 0.5695       | 0.7091           | 0.2934          | 0.525               | 0.2123     | 0.3678         | 0.1651      | 0.4545          | 0.3293   | 0.4553       |
| 1.0025        | 26.0  | 2782 | 1.2233          | 0.3133 | 0.6269 | 0.271  | 0.109     | 0.2844     | 0.4571    | 0.3171 | 0.4862 | 0.5019  | 0.3415    | 0.4391     | 0.6377    | 0.5774       | 0.7142           | 0.2981          | 0.5279              | 0.2093     | 0.3633         | 0.1619      | 0.46            | 0.32     | 0.4442       |
| 1.0025        | 27.0  | 2889 | 1.2248          | 0.313  | 0.6267 | 0.2686 | 0.1104    | 0.2867     | 0.4571    | 0.3185 | 0.4878 | 0.5026  | 0.361     | 0.44       | 0.637     | 0.5724       | 0.717            | 0.301           | 0.5338              | 0.2043     | 0.365          | 0.1653      | 0.4509          | 0.322    | 0.4463       |
| 1.0025        | 28.0  | 2996 | 1.2249          | 0.311  | 0.6268 | 0.2671 | 0.1071    | 0.2842     | 0.4533    | 0.3186 | 0.4887 | 0.5021  | 0.3363    | 0.4395     | 0.6376    | 0.5732       | 0.7176           | 0.2967          | 0.5265              | 0.201      | 0.3588         | 0.1609      | 0.4564          | 0.3234   | 0.4511       |
| 0.9487        | 29.0  | 3103 | 1.2225          | 0.3125 | 0.6304 | 0.2661 | 0.1045    | 0.2847     | 0.4557    | 0.3199 | 0.4891 | 0.503   | 0.3324    | 0.4407     | 0.639     | 0.5755       | 0.7182           | 0.3001          | 0.5338              | 0.2089     | 0.365          | 0.1574      | 0.4527          | 0.3208   | 0.4453       |
| 0.9487        | 30.0  | 3210 | 1.2223          | 0.3117 | 0.6293 | 0.2667 | 0.106     | 0.2851     | 0.4545    | 0.3195 | 0.4877 | 0.5017  | 0.3298    | 0.4402     | 0.6375    | 0.5742       | 0.7165           | 0.2986          | 0.5309              | 0.2081     | 0.3644         | 0.1561      | 0.4509          | 0.3214   | 0.4458       |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1