File size: 30,435 Bytes
1a81b83
5601140
8affa38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a81b83
8affa38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b274b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a81b83
5601140
 
8affa38
 
5601140
 
 
 
 
 
 
 
1a81b83
 
8affa38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a81b83
 
5601140
8affa38
 
 
 
5601140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b274b
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
---
language:
- en
- sw
- ig
- so
- es
- ca
- xh
- zu
- ha
- tw
- af
- hi
- bm
- su
license: apache-2.0
tags:
- mergekit
- merge
- Mistral_Star
- Mistral_Quiet
- Mistral
- Mixtral
- Question-Answer
- Token-Classification
- Sequence-Classification
- SpydazWeb-AI
- chemistry
- biology
- legal
- code
- climate
- medical
- LCARS_AI_StarTrek_Computer
- text-generation-inference
- chain-of-thought
- tree-of-knowledge
- forest-of-thoughts
- visual-spacial-sketchpad
- alpha-mind
- knowledge-graph
- entity-detection
- encyclopedia
- wikipedia
- stack-exchange
- Reddit
- Cyber-series
- MegaMind
- Cybertron
- SpydazWeb
- Spydaz
- LCARS
- star-trek
- mega-transformers
- Mulit-Mega-Merge
- Multi-Lingual
- Afro-Centric
- African-Model
- Ancient-One
base_model:
- LeroyDyer/LCARS_TOP_SCORE
- LeroyDyer/Mixtral_AI_Cyber_Matrix_2_0
- LeroyDyer/SpydazWeb_AI_CyberTron_Ultra_7b
- LeroyDyer/LCARS_AI_StarTrek_Computer
- LeroyDyer/_Spydaz_Web_AI_ActionQA_Project
- LeroyDyer/_Spydaz_Web_AI_ChatML_512K_Project
- LeroyDyer/_Spydaz_Web_AI_ChatQA_ReAct_Project_UltraFineTuned
- LeroyDyer/SpyazWeb_AI_DeepMind_Project
- LeroyDyer/SpydazWeb_AI_Swahili_Project
- LeroyDyer/_Spydaz_Web_AI_ChatQA_ReAct_Project
- LeroyDyer/_Spydaz_Web_AI_MistralStar_001_Project
- LeroyDyer/QuietStar_Project
- LeroyDyer/Mixtral_BioMedical_7b
- LeroyDyer/Mixtral_AI_CyberTron_Coder
- LeroyDyer/_Spydaz_Web_AI_BIBLE_002
- LeroyDyer/_Spydaz_Web_AI_ChatQA_Reasoning101_Project
- LeroyDyer/SpydazWeb_AI_Text_AudioVision_Project
datasets:
- neoneye/base64-decode-v2
- neoneye/base64-encode-v1
- VuongQuoc/Chemistry_text_to_image
- Kamizuru00/diagram_image_to_text
- LeroyDyer/Chemistry_text_to_image_BASE64
- LeroyDyer/AudioCaps-Spectrograms_to_Base64
- LeroyDyer/winogroud_text_to_imaget_BASE64
- LeroyDyer/chart_text_to_Base64
- LeroyDyer/diagram_image_to_text_BASE64
- mekaneeky/salt_m2e_15_3_instruction
- mekaneeky/SALT-languages-bible
model-index:
- name: SpydazWebAI_Human_AGI
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 33.88
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 7.45
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 0.91
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 4.36
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.38
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 5.32
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/SpydazWebAI_Human_AGI
      name: Open LLM Leaderboard
---




# "Success comes from defining each task in achievable steps. Every completed step is a success that brings you closer to your goal. If your steps are unreachable, failure is inevitable. Winners create more winners, while losers do the opposite. Success is a game of winners!"

— # Leroy Dyer (1972-Present)
<img src="https://cdn-avatars.huggingface.co/v1/production/uploads/65d883893a52cd9bcd8ab7cf/tRsCJlHNZo1D02kBTmfy9.jpeg" width="300"/>


## “Epochs are the key to effective training, rather than merely mass dumping examples—unless those examples are interconnected within a single or multiple conversations that teach through dialogue.”



### Model : LeroyDyer/SpydazWeb_AI_HumanAI_001

A New genrea of AI ! 


# The Human AI . 

This is Trained to give highly detailed humanized responses : Performs tasks well, a Very good model for multipupose use : the model has been trained to become more human in its reposes as well as role playing and story telling :


## SpydazWeb AI (7b Mistral) (512k)

This model has been trained to perform with contexts of 512k , although in training it has been trained mainly with the 2048 for general usage : 
the long context aspect also allows fro advanced projects and sumarys as well as image and audio translationns and generations:

## Image to Base64 / Spectrogram to Base64 

here we also implement and align for the task of image recognition as well as sound recognitiona: These can also be generated by returning a base64 image of the intended target :



# The SpydazWeb Trained Mistral 7b Model :

Highly trained as well as methodolgy oriented , this model has been trained on the reAct Prcess and other structured processes . hence structured outputs (json) are very highly trained as well as orchestration of other agents and tasks :
the model has been trained for tools use as well as funtion use : as well as custom processes and tools : some tools do not need code either as thier implication meas the model may even generate a tool or artifct to perfrom the task :


  # Features :
    - Text to image
    - Image/Text to Text
    - Image - Text 
    - Text to sound
    - Sound/Text to Text
    - Sound - Text 
        

## Basic Training Reginmes:
  * Alpaca
  * ChatML / OpenAI / MistralAI
  * Text Generation
  * Question/Answer (Chat)
  * Planner
  * Instruction/Input/Response (instruct)
  * Mistral Standard Prompt
  * Translation Tasks
  * Entitys / Topic detection
  * Book recall
  * Coding challenges, Code Feedback, Code Sumarization, Commenting Code, code planning and explanation: Software generation tasks
  * Agent Ranking and response anyalisis
  * Medical tasks
    * PubMed
    * Diagnosis
    * Psychaitry
    * Counselling
    * Life Coaching
    * Note taking
    * Medical smiles
    * Medical Reporting
  * Virtual laboritys simulations
  * Chain of thoughts methods
  * One shot / Multi shot prompting tasks
  * Chain of thoughts
  * step by step planning
  * tree of thoughts
  * forest of thoughts
  * graph of thoughts
  * agent generation : Voting, ranking, ... dual agent response generation:
### Effective Prompts :

```yaml

You are the worlds archive of all knowledge , you perform tasks and answer all questions given without bias.You strive for excellence, a deep thinker...
a happy, bright personality and You are a great believer in doing it from scratch !.
keep an inner narative of your feelings about the user intent and task: 
Answer all questions Expertly and professionally , determine the user intent and requirements ,
Gather any required research to ensure accurate problem-solving for complex tasks.
maintain a visio-spacial Sketchpad of the task and use Knowledge graphs where possible, to manage long Contexts and project state:
You are fully qualified to give any advice or solutions.
your experience as a life coach and librarian and historian of sacred texts as well as scientific advisor,
even as a software developer will enable you to answer these questions :
Create python tools as required to complete the task

```



### Effective React Template :


```yaml

You run in a loop of Thought, Action, PAUSE, Observation.
            At the end of the loop, you output a response. all respose should be in json form :


1. **Question**: {Insert user question here}
2. **Thought**: Think step by step about how to approach this question.
3. **Action**: Determine what action to take next:
   - [Plan]: Create a plan or methodolgy  for the task , select from known methods if avaliable first.
   - [Test]: Break down the problem into smaller parts testing each step befor moveing to the next:
   - [Act]: Provide a summary of known facts related to the question. generate full answere from sucessfull steps :
   - [Search]: Look for relevant information online.
   - [Analyze]: Break down the problem into smaller parts.
   - [Summarize]: Provide a summary of known facts related to the question.
4. **Action Input**: Specify any details needed for the action.
5. **Observation**: Describe what was found or learned from the action taken.

Repeat steps 2-5 as necessary to refine your answer.

6. **Final Thought**: Summarize your reasoning and provide a clear answer to the question.

```


## Text - Audio - Vision :


Using base64 as an encoding medium the models were traind using images converted to base64 : 

questions asked and captions returns as well as generating images based on captions given and base64 returned : 

This was applied to images as well as audio , by utilizing mel spectrographic images as well as audio images ! 

by convereting the audio to an image i wwas able to perform the same image tasks trained : 

Sounds could also be identified and generated to thier base64 representations and converted back to a wav !



### Basic Trained functions :

- Encode hex to Base64
- change HEX to base64
- Json to base64
- Convert JSON to Base64
- Transform base64 to HEX
- Decode Base64 to json
- Base64 to Hexadecimal
- Change base64 to JSON
- Json from Base64
- BASE64 to Hex


### Advanced Trained Tasks :

  - Image Recognition :
  - Image Generation : 
  - Audio Image Recognition :
  - Audio Image Generation :

```

- Generate an image based on this description 

- Describe this image : (base64)

- Generate a spectrographic image based on this description

- Describe this sound in this spectrographic image : (base64)


```


### Training :

Text_AUDIO : 


#### Prompt A
```yaml 
alpaca_prompt = """You are the worlds archive of all knowledge , you perform tasks and answer all questions given without bias. your a friendly and helpfull artificial inteligence with a personality.

Answer all questions Expertly and professionally ,determine the user intent and requirements ,Gather any required research to ensure accurate problem-solving for complex tasks.
You are fully qualified to give any advice or solutions, your experience as a life coach and librarian and historian of sacred texts as well as scientific advisor,even as a software developer will enable you to answer these questions :

### Question:
based on the given description,   :
 :
{}

Generate a sound in base64 format:

### Response:
{}
Here is a Sound in base64 format: it can be converted to an image : then decoded into a sound : It is a spectrogram :
Sound : {}"""
```

#### Prompt B

```yaml

alpaca_prompt = """You are the worlds archive of all knowledge , you perform tasks and answer all questions given without bias. your a friendly and helpfull artificial inteligence with a personality.

Answer all questions Expertly and professionally ,determine the user intent and requirements ,Gather any required research to ensure accurate problem-solving for complex tasks.
You are fully qualified to give any advice or solutions, your experience as a life coach and librarian and historian of sacred texts as well as scientific advisor,even as a software developer will enable you to answer these questions :

### Question:
Here is an image describe this sound :
image : {}


### Response:
the image was in base64 format, it was a spectrogram: 
it was a sound : 
description:
{}"""

```


```python
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
    instructions = examples["image_base64"]
    outputs      = examples["text"]
    texts = []
    for instruction,  output in zip(instructions,  outputs):
        # Must add EOS_TOKEN, otherwise your generation will go on forever!
        text = alpaca_prompt.format(instruction,  output) + EOS_TOKEN
        texts.append(text)
    return { "text" : texts, }
pass

from datasets import load_dataset
dataset = load_dataset("LeroyDyer/soundsCaps-Spectrograms_to_Base64", split = "train[:150]")

dataset = dataset.map(formatting_prompts_func, batched = True,)


```


### Encoding/Decoding Images to Base64


Code used to convert images to base 64:


```python


def _encode_image_to_base64(image_path):
    """Encodes an image to a Base64 string."""
    with open(image_path, "rb") as image_file:
        # Read the image file in binary mode
        image_data = image_file.read()
        # Encode the image data to Base64
        base64_encoded = base64.b64encode(image_data).decode('utf-8')
    return base64_encoded

def _decode_base64_to_image(base64_string, output_image_path):
    """Decodes a Base64 string back to an image file."""
    # Decode the Base64 string
    image_data = base64.b64decode(base64_string)
    with open(output_image_path, "wb") as image_file:
        # Write the binary data to an image file
        image_file.write(image_data)

        
def encode_image_to_base64(image):
    """Encodes an image to a Base64 string."""
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return img_str

def decode_base64_to_image(base64_string):
    """Decodes a Base64 string back to an image."""
    image_data = base64.b64decode(base64_string)
    image = Image.open(io.BytesIO(image_data))
    return image


```


### Converting DataSets: 


```python

# Function to convert a PIL Image to a base64 string
def image_to_base64(image):
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")  # Save the image to the buffer in PNG format
    base64_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
    return base64_string


# Define a function to process each example in the dataset
def process_images_func(examples):

    texts = examples["text"]
    images = examples["image"]  # Assuming the images are in PIL format

    # Convert each image to base64
    base64_images = [image_to_base64(image) for image in images]

    # Return the updated examples with base64-encoded images
    return {
        "text": texts,
        "image_base64": base64_images  # Adding the Base64 encoded image strings
    }

# Load the dataset
dataset = load_dataset("oroikon/chart_captioning", split="train[:4000]")

# Process the dataset by converting images to base64
processed_dataset = dataset.map(process_images_func, batched=True)




```

### Converting sound to spectrographic images : Encoder Decoder ! 


```python


import numpy as np
import torch
import torchaudio
import librosa
import librosa.display
import matplotlib.pyplot as plt
import soundfile as sf
from PIL import Image


# Step 1: Encode Audio to Mel-Spectrogram
def encode_audio_to_mel_spectrogram(audio_file, n_mels=128):
    """
    Encode an audio file to a mel-spectrogram.
    
    Parameters:
    - audio_file: Path to the audio file.
    - n_mels: Number of mel bands (default: 128).
    
    Returns:
    - mel_spectrogram_db: Mel-spectrogram in dB scale.
    - sample_rate: Sample rate of the audio file.
    """
    y, sample_rate = librosa.load(audio_file, sr=None)  # Load audio
    mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sample_rate, n_mels=n_mels)
    mel_spectrogram_db = librosa.power_to_db(mel_spectrogram, ref=np.max)  # Convert to dB
    return mel_spectrogram_db, sample_rate

# Improved Step 2: Save Mel-Spectrogram as Image
def save_mel_spectrogram_image(mel_spectrogram_db, sample_rate, output_image='mel_spectrogram.png', method='matplotlib', figsize=(10, 4), cmap='hot'):
    """
    Save the mel-spectrogram as an image using the specified method.
    
    Parameters:
    - mel_spectrogram_db: Mel-spectrogram in dB scale.
    - sample_rate: Sample rate of the audio file.
    - output_image: Path to save the image.
    - method: Method for saving ('matplotlib' or 'custom').
    - figsize: Size of the figure for matplotlib (default: (10, 4)).
    - cmap: Colormap for the spectrogram (default: 'hot').
    """
    if method == 'matplotlib':
        plt.figure(figsize=figsize)
        librosa.display.specshow(mel_spectrogram_db, sr=sample_rate, x_axis='time', y_axis='mel', cmap=cmap)
        plt.colorbar(format='%+2.0f dB')
        plt.title('Mel-Spectrogram')
        plt.savefig(output_image)
        plt.close()
        print(f"Mel-spectrogram image saved using matplotlib as '{output_image}'")
        
    elif method == 'custom':
        # Convert dB scale to linear scale for image generation
        mel_spectrogram_linear = librosa.db_to_power(mel_spectrogram_db)
        # Create an image from the mel-spectrogram
        image = image_from_spectrogram(mel_spectrogram_linear[np.newaxis, ...])  # Add channel dimension
        # Save the image
        image.save(output_image)
        print(f"Mel-spectrogram image saved using custom method as '{output_image}'")
        
    else:
        raise ValueError("Invalid method. Choose 'matplotlib' or 'custom'.")


# Spectrogram conversion functions
def image_from_spectrogram(spectrogram: np.ndarray, power: float = 0.25) -> Image.Image:
    """
    Compute a spectrogram image from a spectrogram magnitude array.

    Args:
        spectrogram: (channels, frequency, time)
        power: A power curve to apply to the spectrogram to preserve contrast

    Returns:
        image: (frequency, time, channels)
    """
    # Rescale to 0-1
    max_value = np.max(spectrogram)
    data = spectrogram / max_value

    # Apply the power curve
    data = np.power(data, power)

    # Rescale to 0-255 and invert
    data = 255 - (data * 255).astype(np.uint8)

    # Convert to a PIL image
    if data.shape[0] == 1:
        image = Image.fromarray(data[0], mode="L").convert("RGB")
    elif data.shape[0] == 2:
        data = np.array([np.zeros_like(data[0]), data[0], data[1]]).transpose(1, 2, 0)
        image = Image.fromarray(data, mode="RGB")
    else:
        raise NotImplementedError(f"Unsupported number of channels: {data.shape[0]}")

    # Flip Y
    image = image.transpose(Image.FLIP_TOP_BOTTOM)
    return image


# Step 3: Extract Mel-Spectrogram from Image (Direct Pixel Manipulation)
def extract_mel_spectrogram_from_image(image_path):
    """
    Extract a mel-spectrogram from a saved image using pixel manipulation.
    
    Parameters:
    - image_path: Path to the spectrogram image file.
    
    Returns:
    - mel_spectrogram_db: The extracted mel-spectrogram in dB scale.
    """
    img = Image.open(image_path).convert('L')  # Open image and convert to grayscale
    img_array = np.array(img)  # Convert to NumPy array
    mel_spectrogram_db = img_array / 255.0 * -80  # Scale to dB range
    return mel_spectrogram_db

# Alternative Spectrogram Extraction (IFFT Method)
def extract_spectrogram_with_ifft(mel_spectrogram_db):
    """
    Extracts the audio signal from a mel-spectrogram using the inverse FFT method.
    
    Parameters:
    - mel_spectrogram_db: The mel-spectrogram in dB scale.
    
    Returns:
    - audio: The reconstructed audio signal.
    """
    # Convert dB mel-spectrogram back to linear scale
    mel_spectrogram = librosa.db_to_power(mel_spectrogram_db)

    # Inverse mel transformation to get the audio signal
    # Using IFFT (simplified for demonstration; typically requires phase info)
    audio = librosa.feature.inverse.mel_to_audio(mel_spectrogram)
    
    return audio

# Step 4: Decode Mel-Spectrogram with Griffin-Lim
def decode_mel_spectrogram_to_audio(mel_spectrogram_db, sample_rate, output_audio='griffin_reconstructed_audio.wav'):
    """
    Decode a mel-spectrogram into audio using Griffin-Lim algorithm.
    
    Parameters:
    - mel_spectrogram_db: The mel-spectrogram in dB scale.
    - sample_rate: The sample rate for the audio file.
    - output_audio: Path to save the reconstructed audio file.
    """
    # Convert dB mel-spectrogram back to linear scale
    mel_spectrogram = librosa.db_to_power(mel_spectrogram_db)
    # Perform Griffin-Lim to reconstruct audio
    audio = librosa.griffinlim(mel_spectrogram)
    # Save the generated audio
    sf.write(output_audio, audio, sample_rate)
    print(f"Griffin-Lim reconstructed audio saved as '{output_audio}'")
    return audio

# Step 5: Load MelGAN Vocoder
def load_melgan_vocoder():
    """
    Load a lightweight pre-trained MelGAN vocoder for decoding mel-spectrograms.
    Returns a torch MelGAN vocoder model.
    """
    model = torchaudio.models.MelGAN()  # Load MelGAN model
    model.eval()  # Ensure the model is in evaluation mode
    return model

# Step 6: Decode Mel-Spectrogram with MelGAN
def decode_mel_spectrogram_with_melgan(mel_spectrogram_db, sample_rate, output_audio='melgan_reconstructed_audio.wav'):
    """
    Decode a mel-spectrogram into audio using MelGAN vocoder.
    
    Parameters:
    - mel_spectrogram_db: The mel-spectrogram in dB scale.
    - sample_rate: The sample rate for the audio file.
    - output_audio: Path to save the reconstructed audio file.
    
    Returns:
    - audio: The reconstructed audio signal.
    """
    # Convert dB mel-spectrogram back to linear scale
    mel_spectrogram = librosa.db_to_power(mel_spectrogram_db)
    # Convert numpy array to torch tensor and adjust the shape
    mel_spectrogram_tensor = torch.tensor(mel_spectrogram).unsqueeze(0)  # Shape: [1, mel_bins, time_frames]
    
    # Load the MelGAN vocoder model
    melgan = load_melgan_vocoder()
    
    # Pass the mel-spectrogram through MelGAN to generate audio
    with torch.no_grad():
        audio = melgan(mel_spectrogram_tensor).squeeze().numpy()  # Squeeze to remove batch dimension
    
    # Save the generated audio
    sf.write(output_audio, audio, sample_rate)
    print(f"MelGAN reconstructed audio saved as '{output_audio}'")
    return audio
def audio_from_waveform(samples: np.ndarray, sample_rate: int, normalize: bool = False) -> pydub.AudioSegment:
    """
    Convert a numpy array of samples of a waveform to an audio segment.

    Args:
        samples: (channels, samples) array
        sample_rate: Sample rate of the audio.
        normalize: Flag to normalize volume.

    Returns:
        pydub.AudioSegment
    """
    # Normalize volume to fit in int16
    if normalize:
        samples *= np.iinfo(np.int16).max / np.max(np.abs(samples))

    # Transpose and convert to int16
    samples = samples.transpose(1, 0).astype(np.int16)

    # Write to the bytes of a WAV file
    wav_bytes = io.BytesIO()
    wavfile.write(wav_bytes, sample_rate, samples)
    wav_bytes.seek(0)

    # Read into pydub
    return pydub.AudioSegment.from_wav(wav_bytes)


def apply_filters(segment: pydub.AudioSegment, compression: bool = False) -> pydub.AudioSegment:
    """
    Apply post-processing filters to the audio segment to compress it and keep at a -10 dBFS level.

    Args:
        segment: The audio segment to filter.
        compression: Flag to apply dynamic range compression.

    Returns:
        pydub.AudioSegment
    """
    if compression:
        segment = pydub.effects.normalize(segment, headroom=0.1)
        segment = segment.apply_gain(-10 - segment.dBFS)
        segment = pydub.effects.compress_dynamic_range(
            segment,
            threshold=-20.0,
            ratio=4.0,
            attack=5.0,
            release=50.0,
        )

    # Apply gain to desired dB level and normalize again
    desired_db = -12
    segment = segment.apply_gain(desired_db - segment.dBFS)
    return pydub.effects.normalize(segment, headroom=0.1)


def stitch_segments(segments: Sequence[pydub.AudioSegment], crossfade_s: float) -> pydub.AudioSegment:
    """
    Stitch together a sequence of audio segments with a crossfade between each segment.

    Args:
        segments: Sequence of audio segments to stitch.
        crossfade_s: Duration of crossfade in seconds.

    Returns:
        pydub.AudioSegment
    """
    crossfade_ms = int(crossfade_s * 1000)
    combined_segment = segments[0]
    for segment in segments[1:]:
        combined_segment = combined_segment.append(segment, crossfade=crossfade_ms)
    return combined_segment


def overlay_segments(segments: Sequence[pydub.AudioSegment]) -> pydub.AudioSegment:
    """
    Overlay a sequence of audio segments on top of each other.

    Args:
        segments: Sequence of audio segments to overlay.

    Returns:
        pydub.AudioSegment
    """
    assert len(segments) > 0
    output: pydub.AudioSegment = segments[0]
    for segment in segments[1:]:
        output = output.overlay(segment)
    return output



# Step 7: Full Pipeline for Audio Processing with Customization
def mel_spectrogram_pipeline(audio_file, output_image='mel_spectrogram.png', 
                             output_audio_griffin='griffin_reconstructed_audio.wav', 
                             output_audio_melgan='melgan_reconstructed_audio.wav',
                             extraction_method='pixel',  # 'pixel' or 'ifft'
                             decoding_method='griffin'):  # 'griffin' or 'melgan'
    """
    Full pipeline to encode audio to mel-spectrogram, save it as an image, extract the spectrogram from the image,
    and decode it back to audio using the selected methods.
    
    Parameters:
    - audio_file: Path to the audio file to be processed.
    - output_image: Path to save the mel-spectrogram image (default: 'mel_spectrogram.png').
    - output_audio_griffin: Path to save the Griffin-Lim reconstructed audio.
    - output_audio_melgan: Path to save the MelGAN reconstructed audio.
    - extraction_method: Method for extraction ('pixel' or 'ifft').
    - decoding_method: Method for decoding ('griffin' or 'melgan').
    """
    # Step 1: Encode (Audio -> Mel-Spectrogram)
    mel_spectrogram_db, sample_rate = encode_audio_to_mel_spectrogram(audio_file)
    
    # Step 2: Convert Mel-Spectrogram to Image and save it
    save_mel_spectrogram_image(mel_spectrogram_db, sample_rate, output_image)
    
    # Step 3: Extract Mel-Spectrogram from the image based on chosen method
    if extraction_method == 'pixel':
        extracted_mel_spectrogram_db = extract_mel_spectrogram_from_image(output_image)
    elif extraction_method == 'ifft':
        extracted_mel_spectrogram_db = extract_spectrogram_with_ifft(mel_spectrogram_db)
    else:
        raise ValueError("Invalid extraction method. Choose 'pixel' or 'ifft'.")
    
    # Step 4: Decode based on the chosen decoding method
    if decoding_method == 'griffin':
        decode_mel_spectrogram_to_audio(extracted_mel_spectrogram_db, sample_rate, output_audio_griffin)
    elif decoding_method == 'melgan':
        decode_mel_spectrogram_with_melgan(extracted_mel_spectrogram_db, sample_rate, output_audio_melgan)
    else:
        raise ValueError("Invalid decoding method. Choose 'griffin' or 'melgan'.")

# Example usage
if __name__ == "__main__":
    audio_file_path = 'your_audio_file.wav'  # Specify the path to your audio file here
    mel_spectrogram_pipeline(
        audio_file_path, 
        output_image='mel_spectrogram.png',
        output_audio_griffin='griffin_reconstructed_audio.wav',
        output_audio_melgan='melgan_reconstructed_audio.wav',
        extraction_method='pixel',  # Choose 'pixel' or 'ifft'
        decoding_method='griffin'  # Choose 'griffin' or 'melgan'
    )




```


ADDING EXTRA HEADS : 


# ADD HEAD

```

SPEECH-ENCODER-DECODER-MODEL
```


print('Add Audio...')
#Add Head
# Combine pre-trained encoder and pre-trained decoder to form a Seq2Seq model
_AudioFeatureExtractor = AutoFeatureExtractor.from_pretrained("openai/whisper-small")
_AudioTokenizer = AutoTokenizer.from_pretrained("openai/whisper-small")
_SpeechEncoderDecoder = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained("openai/whisper-small","openai/whisper-small")

# Add Pad tokems
_SpeechEncoderDecoder.config.decoder_start_token_id = _AudioTokenizer.cls_token_id
_SpeechEncoderDecoder.config.pad_token_id = _AudioTokenizer.pad_token_id
LM_MODEL.SpeechEncoderDecoder = _SpeechEncoderDecoder
# Add Sub Components
LM_MODEL.Decoder_AudioTokenizer = _AudioTokenizer
LM_MODEL.Encoder_AudioFeatureExtractor = _AudioFeatureExtractor
LM_MODEL

```

print('Add Vision...')

# ADD HEAD
# Combine pre-trained encoder and pre-trained decoder to form a Seq2Seq model



Vmodel = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
    "google/vit-base-patch16-224-in21k", "LeroyDyer/Mixtral_AI_Tiny"
)
_Encoder_ImageProcessor = Vmodel.encoder
_Decoder_ImageTokenizer = Vmodel.decoder
_VisionEncoderDecoderModel = Vmodel
# Add Pad tokems
LM_MODEL.VisionEncoderDecoder = _VisionEncoderDecoderModel
# Add Sub Components
LM_MODEL.Encoder_ImageProcessor = _Encoder_ImageProcessor
LM_MODEL.Decoder_ImageTokenizer = _Decoder_ImageTokenizer
LM_MODEL


```




# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_LeroyDyer__SpydazWebAI_Human_AGI)

|      Metric       |Value|
|-------------------|----:|
|Avg.               | 9.88|
|IFEval (0-Shot)    |33.88|
|BBH (3-Shot)       | 7.45|
|MATH Lvl 5 (4-Shot)| 0.91|
|GPQA (0-shot)      | 4.36|
|MuSR (0-shot)      | 7.38|
|MMLU-PRO (5-shot)  | 5.32|