File size: 128,115 Bytes
957c84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88942a
957c84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a88942a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
957c84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
# coding=utf-8
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Mistral model."""
import inspect
import math
import copy
import os
import time
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import wandb
from termcolor import colored
from tqdm import tqdm
import random
import numpy as np
from matplotlib.colors import LinearSegmentedColormap, LogNorm
import warnings
from collections import defaultdict
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)
from .configuration_mistral import MistralConfig


if is_flash_attn_2_available():
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa

    _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "MistralConfig"

from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import letter
from reportlab.lib.colors import HexColor

def save_tokens_with_rewards_to_pdf(input_ids, token_rewards, tokenizer, output_file="text.pdf", eps=0.2, eps2=0.5):
    c = canvas.Canvas(output_file, pagesize=letter)
    c.setFont("Courier", 8)
    x, y = 50, 750
    previous_text = ""
    current_text = ""
    for token_idx, reward in enumerate(token_rewards):
        current_text = tokenizer.decode(input_ids[: token_idx + 1])
        if current_text != previous_text:
            diff_text = current_text[len(previous_text) :]
            if "\n" in diff_text:
                lines = diff_text.split("\n")
                for line_idx, line in enumerate(lines):
                    if line_idx > 0:
                        x = 50
                        y -= 12
                    if abs(reward) < eps:
                        opacity = 0
                    elif abs(reward) > eps2:
                        opacity = 0.8
                    else:
                        opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps)
                    text_width = c.stringWidth(line)
                    if reward > 0:
                        highlight_color = HexColor("#4CCD99")
                    else:
                        highlight_color = HexColor("#FFC700")
                    highlight_color.alpha = opacity
                    c.setFillColor(highlight_color)
                    c.rect(x, y - 2, text_width, 10, fill=True, stroke=False)
                    c.setFillColor(HexColor("#000000"))
                    c.drawString(x, y, line)
                    x += text_width
            else:
                if abs(reward) < eps:
                    opacity = 0
                elif abs(reward) > eps2:
                    opacity = 0.8
                else:
                    opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps)
                text_width = c.stringWidth(diff_text)
                if reward > 0:
                    highlight_color = HexColor("#4CCD99")
                else:
                    highlight_color = HexColor("#FFC700")
                highlight_color.alpha = opacity
                c.setFillColor(highlight_color)
                c.rect(x, y - 2, text_width, 10, fill=True, stroke=False)
                c.setFillColor(HexColor("#000000"))
                c.drawString(x, y, diff_text)
                x += text_width
            if x > 550:
                x = 50
                y -= 12
            if y < 50:
                c.showPage()
                y = 750
                x = 50
            previous_text = current_text
    c.showPage()
    c.save()


# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
class MistralRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        MistralRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return hidden_states.to(input_dtype) * self.weight.to(hidden_states.device)

# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
class MistralRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )

class MistralLinearScalingRotaryEmbedding(MistralRotaryEmbedding):
    """MistralRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
        t = t / self.scaling_factor

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.cos().to(dtype), persistent=False)


class MistralDynamicNTKScalingRotaryEmbedding(MistralRotaryEmbedding):
    """MistralRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
            self.register_buffer("inv_freq", inv_freq, persistent=False)

        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)


class MistralYaRNScaledRotaryEmbedding(torch.nn.Module):
    """MistralRotaryEmbedding extended with YaRN. See: https://arxiv.org/abs/2309.00071"""
    def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, original_max_position_embeddings=2048,
                 extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self.scale = scale
        self.original_max_position_embeddings = original_max_position_embeddings
        self.extrapolation_factor = extrapolation_factor
        self.attn_factor = attn_factor
        self.beta_fast = beta_fast
        self.beta_slow = beta_slow

        self.yarn(device)

        # Build here to make `torch.jit.trace` work.
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        dtype = torch.get_default_dtype()

        self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
        self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
        if seq_len > self.max_seq_len_cached:
            self.max_seq_len_cached = seq_len

            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

            self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
            self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )

    def yarn(self, device):
        pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
        inv_freq_extrapolation = 1.0 / pos_freqs
        inv_freq_interpolation = 1.0 / (self.scale * pos_freqs)

        low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
        inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
        inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask

        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.mscale = float(_yarn_get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation


class MistralDynamicYaRNScaledRotaryEmbedding(torch.nn.Module):
    """MistralRotaryEmbedding extended with Dynamic YaRN. See: https://arxiv.org/abs/2309.00071"""
    def __init__(self, dim, max_position_embeddings=2048, base=10000, original_max_position_embeddings=2048,
                 extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self.original_max_position_embeddings = original_max_position_embeddings
        self.extrapolation_factor = extrapolation_factor
        self.attn_factor = attn_factor
        self.beta_fast = beta_fast
        self.beta_slow = beta_slow

        if finetuned:
            self.yarn(self.max_position_embeddings / self.original_max_position_embeddings, device)
        else:
            inv_freq = 1.0 / \
                (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
            self.register_buffer("inv_freq", inv_freq, persistent=False)
            self.mscale = 1

        # Build here to make `torch.jit.trace` work.
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        dtype = torch.get_default_dtype()

        self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
        self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
        if seq_len > self.max_seq_len_cached:
            self.max_seq_len_cached = seq_len

            self.yarn(seq_len / self.max_position_embeddings, x.device)

            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)

            self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
            self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )

    def yarn(self, scale, device):
        pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
        inv_freq_extrapolation = 1.0 / pos_freqs
        inv_freq_interpolation = 1.0 / (scale * pos_freqs)

        low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
        inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
        inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask

        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.mscale = float(_yarn_get_mscale(scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation

# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class MistralMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class MistralAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
    and "Generating Long Sequences with Sparse Transformers".
    """

    def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
                "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True
        self.attention_dropout = config.attention_dropout

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.rotary_emb = MistralRotaryEmbedding(
            self.head_dim,
            max_position_embeddings=self.max_position_embeddings,
            base=self.rope_theta,
        )

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )

            attn_weights = attn_weights + attention_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class MistralFlashAttention2(MistralAttention):
    """
    Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        **kwargs,
    ):
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

            # overwrite attention_mask with padding_mask
            attention_mask = kwargs.pop("padding_mask")
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

        # Because the input can be padded, the absolute sequence length depends on the max position id.
        rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
        cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)

        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        use_sliding_windows = (
            _flash_supports_window_size
            and getattr(self.config, "sliding_window", None) is not None
            and kv_seq_len > self.config.sliding_window
        )

        if not _flash_supports_window_size:
            logger.warning_once(
                "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
                " make sure to upgrade flash-attn library."
            )

        if past_key_value is not None:
            # Activate slicing cache only if the config has a value `sliding_windows` attribute
            cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
            if (
                getattr(self.config, "sliding_window", None) is not None
                and kv_seq_len > self.config.sliding_window
                and cache_has_contents
            ):
                slicing_tokens = 1 - self.config.sliding_window

                past_key = past_key_value[self.layer_idx][0]
                past_value = past_key_value[self.layer_idx][1]

                past_key = past_key[:, :, slicing_tokens:, :].contiguous()
                past_value = past_value[:, :, slicing_tokens:, :].contiguous()

                if past_key.shape[-2] != self.config.sliding_window - 1:
                    raise ValueError(
                        f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
                        f" {past_key.shape}"
                    )

                if attention_mask is not None:
                    attention_mask = attention_mask[:, slicing_tokens:]
                    attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)

            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        dropout_rate = 0.0 if not self.training else self.attention_dropout

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in float16 just to be sure everything works as expected.
        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        # Reashape to the expected shape for Flash Attention
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        attn_output = self._flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            dropout=dropout_rate,
            use_sliding_windows=use_sliding_windows,
        )

        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

    def _flash_attention_forward(
        self,
        query_states,
        key_states,
        value_states,
        attention_mask,
        query_length,
        dropout=0.0,
        softmax_scale=None,
        use_sliding_windows=False,
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`int`, *optional*):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
            use_sliding_windows (`bool`, *optional*):
                Whether to activate sliding window attention.
        """
        if not self._flash_attn_uses_top_left_mask:
            causal = self.is_causal
        else:
            # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
            causal = self.is_causal and query_length != 1

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            if not use_sliding_windows:
                attn_output_unpad = flash_attn_varlen_func(
                    query_states,
                    key_states,
                    value_states,
                    cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k=cu_seqlens_k,
                    max_seqlen_q=max_seqlen_in_batch_q,
                    max_seqlen_k=max_seqlen_in_batch_k,
                    dropout_p=dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                )
            else:
                attn_output_unpad = flash_attn_varlen_func(
                    query_states,
                    key_states,
                    value_states,
                    cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k=cu_seqlens_k,
                    max_seqlen_q=max_seqlen_in_batch_q,
                    max_seqlen_k=max_seqlen_in_batch_k,
                    dropout_p=dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                    window_size=(self.config.sliding_window, self.config.sliding_window),
                )

            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            if not use_sliding_windows:
                attn_output = flash_attn_func(
                    query_states,
                    key_states,
                    value_states,
                    dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                )
            else:
                attn_output = flash_attn_func(
                    query_states,
                    key_states,
                    value_states,
                    dropout,
                    softmax_scale=softmax_scale,
                    causal=causal,
                    window_size=(self.config.sliding_window, self.config.sliding_window),
                )

        return attn_output

    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape

        # On the first iteration we need to properly re-create the padding mask
        # by slicing it on the proper place
        if kv_seq_len != attention_mask.shape[-1]:
            attention_mask_num_tokens = attention_mask.shape[-1]
            attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]

        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)

        key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
        value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)

        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral
class MistralSdpaAttention(MistralAttention):
    """
    Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
    `MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
    SDPA API.
    """

    # Adapted from MistralAttention.forward
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if output_attentions:
            # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)

        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and attention_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attention_mask.to(query_states.device) if attention_mask is not None else None,
            dropout_p=self.attention_dropout if self.training else 0.0,
            # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
            is_causal=self.is_causal and attention_mask is None and q_len > 1,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value


MISTRAL_ATTENTION_CLASSES = {
    "eager": MistralAttention,
    "flash_attention_2": MistralFlashAttention2,
    "sdpa": MistralSdpaAttention,
}


class MistralDecoderLayer(nn.Module):
    def __init__(self, config: MistralConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)

        self.mlp = MistralMLP(config)
        self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual.to(hidden_states.device) + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


MISTRAL_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`MistralConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
    MISTRAL_START_DOCSTRING,
)
class MistralPreTrainedModel(PreTrainedModel):
    config_class = MistralConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MistralDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


MISTRAL_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.

            Two formats are allowed:
            - a [`~cache_utils.Cache`] instance;
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
            cache format.

            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
            legacy cache format will be returned.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
    MISTRAL_START_DOCSTRING,
)
class MistralModel(MistralPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]

    Args:
        config: MistralConfig
    """

    def __init__(self, config: MistralConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self._attn_implementation = config._attn_implementation
        self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        past_key_values_length = 0

        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_key_values_length = past_key_values.get_usable_length(seq_length)

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
            is_padding_right = attention_mask[:, -1].sum().item() != batch_size
            if is_padding_right:
                raise ValueError(
                    "You are attempting to perform batched generation with padding_side='right'"
                    " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
                    " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
                )

        if self._attn_implementation == "flash_attention_2":
            # 2d mask is passed through the layers
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        elif self._attn_implementation == "sdpa" and not output_attentions and attention_mask.dim() == 2 and False:
            # output_attentions=True can not be supported when using SDPA, and we fall back on
            # the manual implementation that requires a 4D causal mask in all cases.
            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )
        elif attention_mask is None or attention_mask.dim() == 2:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
                sliding_window=self.config.sliding_window,
            )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

def nonzero_mean(x, axis=None):
    if axis is not None:
        return x.sum(axis) / (x != 0).sum(axis)
    return x.sum() / (x != 0).sum()

def loss_mean(x):
    return x.sum() / (x != 0).sum()

class MistralForCausalLM(MistralPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = MistralModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.max_thoughts = config.max_thoughts
        self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads
        self.use_concat_talk_head = config.use_concat_talk_head
        self.use_shallow_talk = config.use_shallow_talk
        self.use_complex_talk_head = config.use_complex_talk_head
        self.use_weighted_talk_head = config.use_weighted_talk_head
        # the weighted head will output a single value, so it can't be passed to the lm head
        assert not (self.use_weighted_talk_head and self.use_shallow_talk)

        self.n_ahead = 1
        self.n_ahead_talk = 1
        self.n_passes = 1
        self.n_tokens_print = 1
        self.gradient_accumulation_steps = 1
        self.training_steps = 0
        self.tokenizer = None
        self.start_token_id = None
        self.end_token_id = None
        self.rm_initialized = False
        self.residual_talk_head = True
        self.thought_init_std_scale = 1e-2

        self.final_only_mode = False
        self.first_and_last_mode = True
        self.first_only = False
        self.original_loss_weight = 0.5

        self.cumulative_residual = False
        self.clever_residual = False
        self.skip_residual = False
        self.no_residual = True

        self.optimize_lm_head_only_at_start = False
        self.optimize_model_only_at_start = False

        if self.optimize_model_only_at_start:
            raise NotImplementedError
        self.train_only_thinking_embedding = False
        self.weighted_embeddings = False
        self.use_start_thought_token = True
        self.use_end_thought_token = True
        self.initialize_thought_embedding_to_normal = False
        self.initial_start_token = "---"
        self.initial_end_token = "---"
        self.output_logits_at_the_end = True

        self.wandb_enabled = False
        self.gumbel_temperature = 0.001

        self.use_policy_loss = True
        self.include_policy_loss = True
        self.trice_mode = True
        self.remove_negative_rewards = True
        self.use_policy_loss_for_end_thought = True
        
        self.base_original_mode = False
        self.original_mode = False

        self.thought_prefix = "(Let's think step by step"
        self.tokenized_thought_prefix = None
        self.log_dict = defaultdict(int)
        self.eval_log_dict = defaultdict(int)
        self.print_final_only = True
        self.loss_mean = loss_mean
        self.all_rewards = []
        self.all_unreduced_losses = []
        self.kill_after = 100

        self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))
        self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size))

        self.policy_loss_beta = 1e6
        self.embedding_scale = 1e2
        self.reinforce_temperature = 3
        self.base_loss_beta = 1

        # Not used in the paper:
        self.use_thought_prefix = False
        self.use_reparam_for_thought_embeddings = False
        self.use_upper_triangular = False
        self.subtract_mean_reward = False
        self.comparison_mode = False
        self.gumbel_detach = True
    
        # For visualization
        self.eval_mode = False

        num_talk = 1
        talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2
        if self.use_weighted_talk_head:
            talk_output_dim = 1
        else:
            talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size

        if not self.merged_lm_and_talk_heads:
            if self.use_complex_talk_head:
                self.talk_head = nn.ModuleList([nn.Sequential(
                    nn.Linear(talk_input_dim, config.hidden_size),
                    nn.ReLU(),
                    nn.Linear(config.hidden_size, config.hidden_size),
                    nn.ReLU(),
                    nn.Linear(config.hidden_size, talk_output_dim, bias=False)
                )])
            else:
                self.talk_head = nn.ModuleList([nn.Sequential(
                    nn.Linear(talk_input_dim, talk_output_dim, bias=False)
                )])

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @torch.no_grad()
    def infer(
        self,
        input_ids: torch.LongTensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        batch_size, seq_len = input_ids.shape

        # Save the original input_ids and attention_mask for later use
        original_input_ids = input_ids.clone()
        original_attention_mask = attention_mask.clone() if attention_mask is not None else None

        # Append the start thought token to the input sequence
        start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
        input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
        seq_len += 1

        # Update the attention mask
        if attention_mask is not None:
            attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)

        # Generate the continuation
        continuation_length = self.n_ahead - 2
        new_key_values = past_key_values
        
        start_time = time.time()
        for continuation_idx in range(continuation_length):
            outputs = self.model(
                input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device),
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=new_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            new_key_values = outputs.past_key_values

            hidden_states = outputs[0]

            logits = self.lm_head(hidden_states)
            logits = logits[:, -1, :]  # Only consider the last token

            # Apply Gumbel-Softmax to the logits
            next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1)
            next_token_id = torch.argmax(next_token_logits, dim=-1)

            # Append the generated token to the input sequence
            input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1)
            seq_len += 1

            # Update the attention mask
            if attention_mask is not None:
                attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)

        # Append the end thought token to the input sequence
        end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
        input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1)
        seq_len += 1

        # Update the attention mask
        if attention_mask is not None:
            attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1)

        # Get the hidden states before and after the thought
        outputs_before = self.model(
            input_ids=original_input_ids,
            attention_mask=original_attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states_before = outputs_before[0][:, -1:, :]

        # two new tokens: last continuation token and end thought token
        outputs_after = self.model(
            input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1),
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=new_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states_after = outputs_after[0][:, -1:, :]

        # Apply the talk head to get the mixing weight
        mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1))

        # Apply the mixing weight to the hidden states
        mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after

        # Apply the language model head to get the final logits
        logits = self.lm_head(mixed_hidden_states)
        return logits

    @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, MistralForCausalLM

        >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
        >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        log_dict = self.log_dict if self.training else self.eval_log_dict

        if self.training and self.kill_after is not None and self.training_steps // self.gradient_accumulation_steps > self.kill_after:
            raise ValueError("Killed after")

        if not self.training:
            n_ahead_talk_to_restore = self.n_ahead_talk
            n_passes_to_restore = self.n_passes
            self.n_ahead_talk = 1
            self.n_passes = 1

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual
        assert not (self.skip_residual and self.use_policy_loss)

        if self.tokenized_thought_prefix is None and self.use_thought_prefix:
            self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"]

        def apply_head(head, states, detach=False):
            if detach:
                head_weight = head.weight.detach()
            else:
                head_weight = head.weight
            head_weight = head_weight.to(states.device)
            return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous()
    
        def idx_if_sequential(head, idx=0):
            if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList):
                return idx_if_sequential(head[idx], idx=idx)
            return head

        def none_repeat_interleave(x, n):
            if x is None:
                return x
            return x.repeat_interleave(n, dim=0)

        if self.n_passes > 1:
            input_ids = none_repeat_interleave(input_ids, self.n_passes)
            attention_mask = none_repeat_interleave(attention_mask, self.n_passes)
            position_ids = none_repeat_interleave(position_ids, self.n_passes)
            inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes)
            labels = none_repeat_interleave(labels, self.n_passes)
            if past_key_values is not None:
                past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values]
        cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device)

        self.tokenizer_has_start_thought_token = True
        self.tokenizer_has_end_thought_token = True
        if self.start_token_id is None:
            self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>")
            if self.start_token_id == 0:
                self.start_token_id = self.tokenizer.bos_token_id
                self.tokenizer_has_start_thought_token = False
            elif self.use_start_thought_token:
                # base_start_id = self.tokenizer.convert_tokens_to_ids(self.initial_start_token)
                base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0]
                if self.initialize_thought_embedding_to_normal:
                    self.start_embedding.data = torch.zeros_like(self.start_embedding.data)
                else:
                    self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale
                self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)
        if self.end_token_id is None:
            self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>")
            if self.end_token_id == 0:
                self.end_token_id = self.tokenizer.eos_token_id
                self.tokenizer_has_end_thought_token = False
            elif self.use_end_thought_token:
                # base_end_id = self.tokenizer.convert_tokens_to_ids(self.initial_end_token)
                base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0]
                if self.initialize_thought_embedding_to_normal:
                    self.end_embedding.data = torch.zeros_like(self.end_embedding.data)
                else:
                    self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale
                self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale)

        if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode):
            self.rm_initialized = True                        
            if not self.use_shallow_talk:
                head = self.talk_head[0]
                cur_head = head[-1] if isinstance(head, nn.Sequential) else head
                talk_input_dim = cur_head.weight.data.shape[1]
                talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0]
                cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype)
            else:
                # convert to identity transform
                def lambda_transform(cur_head):
                    if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]:
                        return torch.cat([
                        torch.eye(
                            cur_head.weight.data.shape[0],
                            device=cur_head.weight.device,
                            dtype=cur_head.weight.dtype
                        ),
                        torch.zeros(
                            cur_head.weight.data.shape[0],
                            cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0],
                            device=cur_head.weight.device,
                            dtype=cur_head.weight.dtype
                        )], dim=1)
                    return torch.eye(
                        cur_head.weight.data.shape[0],
                        device=cur_head.weight.device,
                        dtype=cur_head.weight.dtype
                    )
                if isinstance(self.talk_head[0], nn.Sequential):
                    for cur_head in self.talk_head[0]:
                        # if it has weights
                        if hasattr(cur_head, "weight"):
                            cur_head.weight.data = lambda_transform(cur_head)
                else:
                    self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0])

        loss = None
        prev_rm_tokens = None
        cur_rm_tokens = None
        prev_rm_logits = None
        prev_sample_probs = None
        did_skip_sampling = None
        skip_sampling = None
        sample_probs = None
        hidden_states = None
        logits = None
        talk_kl_penalty = None
        rm_logits = None
        residual_logits = None
        probabilities_2d = None
        prev_probabilities_2d = None
        policy_reward = None
        logits_to_output = None
        batch_size, seq_len = input_ids.shape
        base_input_ids = input_ids.clone()
        loss_list = []
        dqn_loss_list = []
        sampled_token_history = []
        sample_probs_history = []
        action_loglikelihoods_list = []

        if self.use_end_thought_token or self.use_start_thought_token:
            if not self.use_reparam_for_thought_embeddings:
                start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale
                end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale
            else:
                start_embedding = self.start_embedding * self.embedding_scale
                end_embedding = self.end_embedding * self.embedding_scale
            base_embeddings = self.model.embed_tokens.weight
            if self.train_only_thinking_embedding:
                base_embeddings = base_embeddings.detach()
        # # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1
        for ahead_idx in range(fwd_iters):
            past_key_values_length = 0
            if past_key_values is not None:
                use_legacy_cache = not isinstance(past_key_values, Cache)
                if use_legacy_cache:
                    past_key_values = DynamicCache.from_legacy_cache(past_key_values)
                past_key_values_length = past_key_values.get_usable_length(seq_len)

            if position_ids is None:
                device = input_ids.device if input_ids is not None else inputs_embeds.device
                position_ids = torch.arange(
                    past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device
                )
                position_ids = position_ids.unsqueeze(0).view(-1, seq_len)
            else:
                position_ids = position_ids.view(-1, seq_len).long()

            if inputs_embeds is None:
                contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any()
                contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any()
                contains_thought = contains_start or contains_end
                if contains_thought:
                    thought_id = self.start_token_id if contains_start else self.end_token_id
                    cur_thought_embedding = start_embedding if contains_start else end_embedding
                    if self.use_reparam_for_thought_embeddings:
                        inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
                        inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
                        if contains_start:
                            sampled_start = inputs_embeds.clone().detach()
                        if contains_end:
                            sampled_end = inputs_embeds.clone().detach()
                    else:
                        inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
                else:
                    with torch.set_grad_enabled(not self.train_only_thinking_embedding):
                        inputs_embeds = self.model.embed_tokens(input_ids)
            
            if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode:
                if attention_mask is None:
                    base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device)
                    base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len)
                    base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1)
                    attention_mask = base_attention_mask
                    breakpoint()
                elif attention_mask.dim() == 2:
                    if seq_len + past_key_values_length != attention_mask.shape[-1]:
                        breakpoint()
                        attention_mask = torch.cat(
                            [torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask],
                            dim=-1
                        )
                    # # if the attention mask 
                    attention_mask = _prepare_4d_causal_attention_mask(
                        attention_mask,
                        (batch_size, seq_len),
                        inputs_embeds,
                        past_key_values_length,
                        sliding_window=self.config.sliding_window,
                    )

            outputs = self.model(
                # input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

            prev_hidden_states = hidden_states
            hidden_states = outputs[0]
            prev_rm_logits = rm_logits  # for policy gradient
            prev_rm_tokens = cur_rm_tokens  # for policy gradient

            if ahead_idx == 0:
                hidden_states_lm = hidden_states
                logits = self.lm_head(hidden_states_lm)
                base_hidden_states = hidden_states.clone()
                initial_loss_logits = logits.clone()
                if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start:
                    logits = logits.detach()
                    base_hidden_states = base_hidden_states.detach()
                if self.optimize_model_only_at_start:
                    hidden_states = hidden_states.detach()
                base_logits = logits.clone()
            else:
                talk_hidden_states = hidden_states
                if self.merged_lm_and_talk_heads:
                    assert self.no_residual
                    residual_logits = self.lm_head(hidden_states)
                    talk_hidden_states = hidden_states
                else:
                    if ahead_idx > self.n_ahead - 1:
                        cur_base_hidden = torch.cat([
                            base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :],
                            base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :]
                        ], dim=-2)
                    else:
                        cur_base_hidden = base_hidden_states

                    if self.use_concat_talk_head:
                        # concatenate the hidden states with the original hidden states
                        head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1)
                    else:
                        head_input_hidden_states = talk_hidden_states

                    residual_logits = self.talk_head[0](head_input_hidden_states)
                    if self.use_shallow_talk:
                        residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)                        
                    residual_logits = residual_logits.to(logits.device)
                    if self.use_weighted_talk_head:
                        # combine the cur_base_hidden with the talk_hidden_states according to the weighted head
                        residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits
                        residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start)

                assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1
                if self.clever_residual:
                    if ahead_idx >= self.n_ahead - 1:
                        # get the logits shifted according to the current talk ahead
                        cur_base_logits = torch.cat([
                            base_logits[..., ahead_idx - self.n_ahead + 1:, :],
                            base_logits[..., :ahead_idx - self.n_ahead + 1, :]
                        ], dim=-2)
                        if self.optimize_lm_head_only_at_start:
                            cur_base_logits = cur_base_logits.detach()
                        logits = cur_base_logits + residual_logits
                    else:
                        logits += residual_logits / self.n_ahead
                elif self.cumulative_residual:
                    if self.residual_talk_head:
                        if ahead_idx < self.n_ahead:
                            logits += residual_logits
                        else:
                            # get the logits shifted according to the current talk ahead
                            cur_base_logits = torch.cat([
                                base_logits[..., ahead_idx - self.n_ahead + 1:, :],
                                base_logits[..., :ahead_idx - self.n_ahead + 1, :]
                            ], dim=-2)
                            if self.optimize_lm_head_only_at_start:
                                cur_base_logits = cur_base_logits.detach()
                            logits = cur_base_logits + residual_logits
                    else:
                        if ahead_idx < self.n_ahead:
                            logits += residual_logits
                        else:
                            logits = residual_logits
                elif self.skip_residual:
                    if ahead_idx >= self.n_ahead:
                        # get the logits shifted according to the current talk ahead
                        cur_base_logits = torch.cat([
                            base_logits[..., ahead_idx - self.n_ahead + 1:, :],
                            base_logits[..., :ahead_idx - self.n_ahead + 1, :]
                        ], dim=-2)
                        if self.optimize_lm_head_only_at_start:
                            cur_base_logits = cur_base_logits.detach()
                        logits = cur_base_logits
                elif self.no_residual:
                    logits = residual_logits
                else:
                    logits = base_logits + residual_logits

            attempted = False
            talk_loss_list = []
            if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0):# or (self.optimize_lm_head_only_at_start and ahead_idx == 0):
                loss = None
                attempted = True

                if labels is not None:
                    for shift_amount in range(self.n_ahead_talk):
                        # Shift so that tokens < n predict n
                        #  ab[cde]f
                        # abc[def]
                        if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
                            loss_logits = initial_loss_logits
                        else:
                            loss_logits = logits
                        shift_logits = loss_logits[..., shift_amount:-1, :].contiguous()
                        shift_labels = labels[..., 1 + shift_amount:].contiguous()
                        # Flatten the tokens
                        loss_fct = CrossEntropyLoss(reduction="none")
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
                        shift_labels = shift_labels.view(-1).clone()
                        # Enable model parallelism
                        shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100
                        shift_labels = shift_labels.to(shift_logits.device)
                        loss = loss_fct(shift_logits, shift_labels)
                        if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode:
                            loss_list.append(loss)
                        talk_loss_list.append(nonzero_mean(loss).detach())
            
            if not attempted or self.comparison_mode:
                rm_hidden_states = hidden_states
                # print("Magnitude of RM hidden states before RM head", rm_hidden_states.norm())
                rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start)
                    
                # don't allow it to predict the thinking token
                if self.tokenizer_has_start_thought_token:                    
                    rm_logits[..., self.start_token_id] = -1e10
                if self.tokenizer_has_end_thought_token:
                    rm_logits[..., self.end_token_id] = -1e10
                probabilities = rm_logits
                if probabilities_2d is not None:
                    prev_probabilities_2d = probabilities_2d.clone()
                probabilities_2d = probabilities.view(-1, probabilities.size(-1))

                did_skip_sampling = skip_sampling
                skip_sampling = False
                if ahead_idx == 0 and self.use_start_thought_token:
                    override_token = self.start_token_id
                elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]:
                    override_token = self.tokenized_thought_prefix[..., ahead_idx]
                elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token:
                    override_token = self.end_token_id
                else:
                    override_token = None
                if override_token is not None and self.n_ahead > 1:
                    # always start with the start token
                    probabilities_2d = torch.zeros_like(probabilities_2d)
                    probabilities_2d[:, override_token] = 1.0
                    skip_sampling = True
                elif ahead_idx >= self.n_ahead - 1:
                    if labels is not None:  # we're in the talk phase
                        cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1
                        # print("Setting rm to labels", cur_talk_n, "during", ahead_idx)
                        shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device)
                        padding = torch.full_like(
                            labels[..., :cur_talk_n],
                            self.tokenizer.pad_token_id,
                            dtype=torch.long,
                            device=shift_labels.device
                        )
                        new_rm_tokens = torch.cat(
                            [shift_labels, padding],
                            dim=-1
                        )
                        # convert rm tokens to one-hot
                        probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype)
                        skip_sampling = True
                    else:
                        continue
                temperature = self.gumbel_temperature if self.training else 0.001
                prev_sample_probs = sample_probs
                sample_probs = probabilities_2d
                if ahead_idx < self.n_ahead - 1 and not skip_sampling:
                    probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1)
                    if self.gumbel_detach:
                        probabilities_2d = probabilities_2d.detach()
                sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu())
                # convert rm logits directly to embeddings
                contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0)
                contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0)
                contains_thought = contains_start or contains_end

                if not contains_thought:
                    with torch.set_grad_enabled(not self.train_only_thinking_embedding):
                        inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype))
                else:
                    thought_id = self.start_token_id if contains_start else self.end_token_id
                    cur_thought_embedding = start_embedding if contains_start else end_embedding
                    if self.use_reparam_for_thought_embeddings:
                        inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype)
                        inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0]
                        if contains_start:
                            sampled_start = inputs_embeds.clone().detach()
                        else:
                            sampled_end = inputs_embeds.clone().detach()
                    else:
                        inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1)
                        inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)
                inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype)

                if len(attention_mask.shape) == 2:
                    breakpoint()
                else:
                    original_attention = attention_mask[..., :attention_mask.shape[-2]]
                    if self.use_upper_triangular:
                        new_attention = original_attention
                    else:
                        original_attention = original_attention == attention_mask.max()
                        # because eye isn't implemented for BF16, we need to handle the case
                        if not attention_mask.dtype == torch.bfloat16:
                            new_attention = torch.eye(
                                seq_len, dtype=attention_mask.dtype, device=attention_mask.device
                            )
                        else:
                            new_attention = torch.eye(
                                seq_len, dtype=torch.float32, device=attention_mask.device
                            ).to(attention_mask.dtype)

                        new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1)
                        new_attention = new_attention * original_attention
                        new_attention[new_attention == 0] = attention_mask.min()
                        new_attention[new_attention == 1] = attention_mask.max()
                    attention_mask = torch.cat([attention_mask, new_attention], dim=-1)
                past_key_values = outputs.past_key_values
                position_ids = position_ids + 1

                if labels is not None and (self.n_ahead > 1 or not self.base_original_mode):
                    # Shift so that tokens < n predict n
                    # logits: abcdef -> bcdef? -> cdef??
                    # labels: abcdef -> ?bcdef -> ??cdef
                    if ahead_idx == 0 and self.optimize_lm_head_only_at_start:
                        loss_logits = initial_loss_logits
                    else:
                        loss_logits = logits
                    shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1))
                    shift_logits = loss_logits[..., :-shift_idx, :].contiguous()
                    shift_labels = labels[..., shift_idx:].contiguous()
                    # Flatten the tokens
                    loss_fct = CrossEntropyLoss(reduction="none")
                    shift_logits = shift_logits.view(-1, self.config.vocab_size)
                    shift_labels = shift_labels.view(-1)
                    # Enable model parallelism
                    shift_labels = shift_labels.to(shift_logits.device)
                    # if shift_labels.min() == self.tokenizer.pad_token_id:
                    shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels)
                    unreduced_loss = loss_fct(shift_logits, shift_labels)
                    if torch.any(unreduced_loss != unreduced_loss):
                        raise ValueError("NaN loss")
                    unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1)
                    loss_list.append(unreduced_loss)


                    if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token):
                        # we treat the change in loss as the reward
                        previous_loss = loss_list[-2]
                        # for example, suppose n_ahead = 3 and n_ahead_talk = 2
                        # note that we end at self.n_ahead + self.n_ahead_talk - 2
                        # in this case, 5 - 2 = 3, so we end at ahead_idx = 3
                        # we also predict the next token at ahead_idx = 2
                        # when we get to ahead_idx = 2, we predict ahead
                        # so we shift by 1
                        # note that this is ahead_idx = n_ahead - 1
                        # when we get to ahead_idx = 3, we predict ahead
                        # so we shift by 2
                        # note that this is ahead_idx = n_ahead
                        if ahead_idx < self.n_ahead - 1:
                            shift_amount = 0
                            original_dqn_reward = (previous_loss - unreduced_loss).detach()
                            if self.first_and_last_mode:
                                original_dqn_reward = original_dqn_reward * 0.0
                        else:
                            # logits vs cur_policy_shift_logits
                            # let's look at rm_logits and prev_rm_logits
                            shift_amount = max(0, ahead_idx - (self.n_ahead - 1))
                            # let's say shift_amount = 2
                            # abcdefg -> bcdefg? -> cdefg??
                            # logits = [a b]c d e f[g]
                            # labels = [a b c]d e f g
                            cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach()
                            cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous()
                            # Flatten the tokens
                            cur_policy_loss_fct = CrossEntropyLoss(reduction="none")
                            cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size)
                            cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone()
                            # Enable model parallelism
                            cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100
                            cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device)
                            cur_policy_reward_base_loss = loss_fct(
                                cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device)
                            ).reshape(logits.shape[0], -1)
                            original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss
                                
                        if not did_skip_sampling:
                            nonzero_indices = prev_probabilities_2d.nonzero()
                            action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]]
                            action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount]
                            action_loglikelihoods_list.append(action_loglikelihoods_2d)
                        if policy_reward is None:
                            policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
                        else:
                            if self.n_ahead_talk > shift_amount:
                                added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)]
                            else:
                                added_reward = original_dqn_reward
                            policy_reward += added_reward
                    
                    if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2:
                        # only compute during the thinking phase
                        if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token):
                            # sampled_start, sampled_end
                            # calculate the log likelihood of the start and end embeddings sampled from a multivariate normal distribution
                            # with mean start_embedding[0] and standard deviation start_embedding[1]
                            if self.use_start_thought_token:
                                exp_start_std = torch.exp(start_embedding[1])
                                start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi)
                                start_loglikelihood = start_loglikelihood.mean(dim=-1)
                            if self.use_end_thought_token:
                                exp_end_std = torch.exp(end_embedding[1])
                                end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi)
                                end_loglikelihood = end_loglikelihood.mean(dim=-1)
                            # we use the mean instead of the sum to prevent dependence on the dimensionality of the embeddings
                            if self.use_end_thought_token and self.use_policy_loss_for_end_thought:
                                action_loglikelihoods_list.append(end_loglikelihood)
                            if self.use_start_thought_token:
                                action_loglikelihoods_list.append(start_loglikelihood)                                

                        if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode:
                            with torch.no_grad():
                                # calculate the 0.75 quantile of the rewards
                                filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten()
                                filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id
                                filtered_tokens = filtered_tokens[filtered_tokens_mask]
                                filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()
                                filtered_rewards = filtered_rewards[filtered_tokens_mask]

                                abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten())
                                abs_reward_list = abs_reward_list[filtered_tokens_mask]
                                medium_quantile = np.quantile(abs_reward_list, 0.5)
                                upper_quantile = np.quantile(abs_reward_list, 0.95)

                                save_tokens_with_rewards_to_pdf(
                                    filtered_tokens,
                                    [0] + filtered_rewards.tolist(),
                                    self.tokenizer,
                                    output_file=f"texts/rewards_talk_{self.n_ahead_talk}_{self.training_steps}.pdf",
                                    eps=medium_quantile,
                                    eps2=upper_quantile,
                                )

                                def plot_kde(data, losses):
                                    sns.set(style="whitegrid")
                                    # Create the KDE plot
                                    sns.kdeplot(data, fill=True)
                                    # Set the plot title and labels
                                    plt.title("KDE Plot")
                                    plt.xlabel("Value")
                                    plt.ylabel("Density")
                                    # Save the plot
                                    plt.savefig(f"texts/kde_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
                                    # Close the plot
                                    plt.close()

                                    # Step 1: Create a base color palette
                                    base_colors = sns.color_palette("light:#5A9", n_colors=256)  # More colors for a smoother gradient
                                    base_cmap = LinearSegmentedColormap.from_list("log_light", base_colors)
                                    log_norm = LogNorm(vmin=1e-3, vmax=10)

                                    sns.kdeplot(x=data, y=losses, fill=True, levels=20, norm=log_norm, cut=0, linewidths=0)
                                    # limit y to 0 to 25 and x to -1 to 1
                                    plt.xlim(-1, 1)
                                    plt.ylim(0, 25)
                                    plt.savefig(f"texts/jointer_talk_{self.n_ahead_talk}_{self.training_steps}.pdf")
                                    plt.close()

                                self.all_rewards.extend(filtered_rewards)
                                self.all_unreduced_losses.extend(unreduced_loss[:, :-1].flatten()[filtered_tokens_mask].float().flatten().cpu().detach().numpy())
                                plot_kde(self.all_rewards, self.all_unreduced_losses)

                        for action_loglikelihoods_2d in action_loglikelihoods_list:
                            train_policy_reward = policy_reward

                            # discard rewards below the mean
                            if self.trice_mode and self.n_passes > 1:
                                batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1])
                                # average over the passes
                                train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True)
                                train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1])
                                
                            if self.subtract_mean_reward:
                                train_policy_reward = train_policy_reward - train_policy_reward.mean()
                            if self.remove_negative_rewards:
                                fixed_policy_reward = train_policy_reward.detach().clamp(min=0)
                            else:
                                fixed_policy_reward = train_policy_reward.detach()
                            actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device)
                            if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts:
                                # This will only happen when we force the next token to be the end of thought token
                                break
                            dqn_loss_list.append(actor_loss.mean())

        if loss_list:
            if self.first_and_last_mode:
                loss = sum(
                    self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk)
                ) * (1 - self.original_loss_weight) / self.n_ahead_talk
                loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight
                # Let's NaN out the others
                # e.g. if n_ahead_talk = 2 and the list is 5 long, we want to NaN out 1, 2 but keep 0, 3, 4
                for i in range(1, len(loss_list) - self.n_ahead_talk):
                    loss_list[i] = loss_list[i] * math.nan
            elif self.first_only:
                loss = self.loss_mean(loss_list[0])
            elif self.final_only_mode:
                loss = sum(
                    self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1)
                ) / self.n_ahead_talk   
            else:
                loss = None
                for i in range(len(loss_list)):
                    cur_loss = self.loss_mean(loss_list[i])
                    if loss is not None:
                        loss = loss + cur_loss.to(loss.device)
                    else:
                        loss = cur_loss
                loss = loss / len(loss_list)
            
            loss = loss * self.base_loss_beta

        if dqn_loss_list:
            dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list)
            if self.include_policy_loss:
                if loss is not None:
                    loss += dqn_loss * self.policy_loss_beta
                else:
                    loss = dqn_loss * self.policy_loss_beta

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output
    
        base_log_dict = {
            f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list))
        }

        if loss is not None:
            base_log_dict["loss_train"] = loss.item()
        
        for loss_key, loss_val in base_log_dict.items():
            log_dict[loss_key] += loss_val / self.n_tokens_print
                
        if self.use_policy_loss and policy_reward is not None:
            log_dict["policy_loss"] += dqn_loss / self.n_tokens_print
            log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print

        if not loss_list:
            if loss is not None:
                log_dict["loss_0"] += loss / self.n_tokens_print
        else:
            log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print
            log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print

        # also log relative losses to loss_0
        if loss_list:
            for i in range(len(loss_list)):
                talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1)
                if not talk_loss_list:
                    cur_talk_loss = nonzero_mean(loss_list[0])
                else:
                    cur_talk_loss = talk_loss_list[talk_idx]
                log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print
        if self.training:
            self.training_steps += 1
        try:
            # if self.training_steps % (self.gradient_accumulation_steps * 256) == 0:
            if self.wandb_enabled:
                if self.training_steps % (self.n_tokens_print) == 0 or not self.training:# and "0" in str(loss.device):
                    if not self.training:
                        new_log_dict = {}
                        for key in list(log_dict.keys()):
                            new_log_dict["eval_" + key] = log_dict[key]
                        log_dict = new_log_dict
                    log_dict["training_steps"] = self.training_steps 
                    log_dict["batch_size"] = batch_size
                    log_dict["example_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
                    if self.n_ahead > 1:
                        log_dict["compute_steps"] = self.training_steps * batch_size * (self.n_ahead + self.n_ahead_talk - 1) * self.gradient_accumulation_steps
                    else: # There's no overhead for talk tokens if there's no thinking
                        log_dict["compute_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps
                    # remove all nans
                    for key in list(log_dict.keys()):
                        if log_dict[key] != log_dict[key]:
                            del log_dict[key]
                    if self.training:
                        wandb.log(log_dict)
                    if self.training:
                        self.log_dict = defaultdict(int)
                    else:
                        self.eval_log_dict = defaultdict(int)
        except Exception as e:
            pass

        if not self.training:
            self.n_ahead_talk = n_ahead_talk_to_restore
            self.n_passes = n_passes_to_restore
        return CausalLMOutputWithPast(
            loss=loss if loss is not None else None,
            logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        # Omit tokens covered by past_key_values
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing inputs_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past


@add_start_docstrings(
    """
    The Mistral Model transformer with a sequence classification head on top (linear layer).

    [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    MISTRAL_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
class MistralForSequenceClassification(MistralPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = MistralModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )