mergekit
Merge
Mistral_Star
Mistral_Quiet
Mistral
Mixtral
Question-Answer
Token-Classification
Sequence-Classification
SpydazWeb-AI
chemistry
biology
legal
code
climate
medical
LCARS_AI_StarTrek_Computer
text-generation-inference
chain-of-thought
tree-of-knowledge
forest-of-thoughts
visual-spacial-sketchpad
alpha-mind
knowledge-graph
entity-detection
encyclopedia
wikipedia
stack-exchange
Reddit
Cyber-series
MegaMind
Cybertron
SpydazWeb
Spydaz
LCARS
star-trek
mega-transformers
Mulit-Mega-Merge
Multi-Lingual
Afro-Centric
African-Model
Ancient-One
# coding=utf-8 | |
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Mistral model configuration""" | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
QUIET_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"LeroyDyer/Mixtral_AI_CyberBrain_3_0": "https://huggingface.co/LeroyDyer/Mixtral_AI_CyberBrain_3_0/resolve/main/config.json", | |
} | |
logger = logging.get_logger(__name__) | |
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json", | |
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json", | |
"LeroyDyer/Mixtral_AI_CyberBrain_3_0": "https://huggingface.co/LeroyDyer/Mixtral_AI_CyberBrain_3_0/resolve/main/config.json", | |
} | |
class MistralConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an | |
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. | |
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | |
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`MistralModel`] | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 14336): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_key_value_heads (`int`, *optional*, defaults to 8): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): | |
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention | |
allows sequence of up to 4096*32 tokens. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
pad_token_id (`int`, *optional*): | |
The id of the padding token. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
The id of the "beginning-of-sequence" token. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the "end-of-sequence" token. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether the model's input and output word embeddings should be tied. | |
rope_scaling (`Dict`, *optional*): | |
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling | |
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format | |
is `{"type": strategy name, "factor": scaling factor}`. | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
sliding_window (`int`, *optional*, defaults to 4096): | |
Sliding window attention window size. If not specified, will default to `4096`. | |
```python | |
>>> from transformers import MistralModel, MistralConfig | |
>>> # Initializing a Mistral 7B style configuration | |
>>> configuration = MistralConfig() | |
>>> # Initializing a model from the Mistral 7B style configuration | |
>>> model = MistralModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "mistral" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=32000, | |
hidden_size=4096, | |
intermediate_size=14336, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=8, | |
hidden_act="silu", | |
max_position_embeddings=4096 * 32, | |
initializer_range=0.02, | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
pad_token_id=None, | |
bos_token_id=1, | |
eos_token_id=2, | |
tie_word_embeddings=False, | |
rope_scaling=None, | |
rope_theta=10000.0, | |
sliding_window=4096, | |
attention_dropout=0.0, | |
max_thoughts=16, | |
max_temperature=10, | |
merged_talk_heads=True, | |
merged_lm_and_talk_heads=False, | |
merged_lm_and_think_heads=True, | |
use_concat_talk_head=True, | |
use_shallow_think=True, | |
use_shallow_talk=False, | |
use_complex_think_head=False, | |
use_complex_talk_head=True, | |
use_weighted_talk_head=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.sliding_window = sliding_window | |
attention_dropout=0.0, | |
max_thoughts=16, | |
max_temperature=10, | |
complexity_factor = 0.5, | |
merged_talk_heads=True, | |
merged_lm_and_talk_heads=False, | |
merged_lm_and_think_heads=True, | |
use_concat_talk_head=True, | |
use_shallow_think=True, | |
use_shallow_talk=False, | |
use_complex_think_head=False, | |
use_complex_talk_head=True, | |
use_weighted_talk_head=True, | |
# for backward compatibility | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
self.rope_scaling = rope_scaling | |
self._rope_scaling_validation() | |
self.rope_theta = rope_theta | |
self.attention_dropout = attention_dropout | |
self.max_thoughts = max_thoughts | |
self.complexity_factor = complexity_factor | |
self.max_temperature = max_temperature | |
self.merged_talk_heads = merged_talk_heads | |
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads | |
self.merged_lm_and_think_heads = merged_lm_and_think_heads | |
self.use_concat_talk_head = use_concat_talk_head | |
self.use_shallow_think = use_shallow_think | |
self.use_shallow_talk = use_shallow_talk | |
self.use_complex_think_head = use_complex_think_head | |
self.use_complex_talk_head = use_complex_talk_head | |
self.use_weighted_talk_head = use_weighted_talk_head | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
def _rope_scaling_validation(self): | |
""" | |
Validate the `rope_scaling` configuration. | |
""" | |
if self.rope_scaling is None: | |
return | |
if not isinstance(self.rope_scaling, dict): | |
raise ValueError( | |
"`rope_scaling` must be a dictionary, " | |
f"got {self.rope_scaling}" | |
) | |
rope_scaling_type = self.rope_scaling.get("type", None) | |
rope_scaling_factor = self.rope_scaling.get("factor", None) | |
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "yarn", "dynamic-yarn"]: | |
raise ValueError( | |
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'yarn', 'dynamic-yarn'], got {rope_scaling_type}" | |
) | |
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: | |
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}") | |
if rope_scaling_type == "yarn" or rope_scaling_type == "dynamic-yarn": | |
original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None) | |
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int): | |
raise ValueError(f"`rope_scaling.original_max_position_embeddings` must be set to an int when using yarn, and dynamic-yarn") | |
# coding=utf-8 | |
# Copyright 2023 Quiet AI and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Quiet model configuration""" | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
class QuietConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`QuietModel`]. It is used to instantiate an | |
Quiet model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the Quiet-7B-v0.1 or Quiet-7B-Instruct-v0.1. | |
[quietai/Quiet-7B-v0.1](https://huggingface.co/quietai/Quiet-7B-v0.1) | |
[quietai/Quiet-7B-Instruct-v0.1](https://huggingface.co/quietai/Quiet-7B-Instruct-v0.1) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the Quiet model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`QuietModel`] | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 14336): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_key_value_heads (`int`, *optional*, defaults to 8): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): | |
The maximum sequence length that this model might ever be used with. Quiet's sliding window attention | |
allows sequence of up to 4096*32 tokens. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
pad_token_id (`int`, *optional*): | |
The id of the padding token. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
The id of the "beginning-of-sequence" token. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
The id of the "end-of-sequence" token. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether the model's input and output word embeddings should be tied. | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
sliding_window (`int`, *optional*, defaults to 4096): | |
Sliding window attention window size. If not specified, will default to `4096`. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
```python | |
>>> from transformers import QuietModel, QuietConfig | |
>>> # Initializing a Quiet 7B style configuration | |
>>> configuration = QuietConfig() | |
>>> # Initializing a model from the Quiet 7B style configuration | |
>>> model = QuietModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "quiet" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=32000, | |
hidden_size=4096, | |
intermediate_size=14336, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=8, | |
hidden_act="silu", | |
max_position_embeddings=4096 * 32, | |
initializer_range=0.02, | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
pad_token_id=None, | |
bos_token_id=1, | |
eos_token_id=2, | |
tie_word_embeddings=False, | |
rope_theta=10000.0, | |
complexity_factor = 0.5, | |
sliding_window=4096, | |
attention_dropout=0.0, | |
max_thoughts=16, | |
max_temperature=10, | |
merged_talk_heads=True, | |
merged_lm_and_talk_heads=False, | |
merged_lm_and_think_heads=True, | |
use_concat_talk_head=True, | |
use_shallow_think=True, | |
use_shallow_talk=False, | |
use_complex_think_head=False, | |
use_complex_talk_head=True, | |
use_weighted_talk_head=True, | |
hidden_dropout_prob=0.0, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.sliding_window = sliding_window | |
# for backward compatibility | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.attention_dropout = attention_dropout | |
self.max_thoughts = max_thoughts | |
self.complexity_factor = complexity_factor | |
self.max_temperature = max_temperature | |
self.merged_talk_heads = merged_talk_heads | |
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads | |
self.merged_lm_and_think_heads = merged_lm_and_think_heads | |
self.use_concat_talk_head = use_concat_talk_head | |
self.use_shallow_think = use_shallow_think | |
self.use_shallow_talk = use_shallow_talk | |
self.use_complex_think_head = use_complex_think_head | |
self.use_complex_talk_head = use_complex_talk_head | |
self.use_weighted_talk_head = use_weighted_talk_head | |
self.hidden_dropout_prob = hidden_dropout_prob | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) |