--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: LeroyDyer/_Spydaz_Web_AI_BIBLE_002 model-index: - name: _Spydaz_Web_AI_BIBLE_002 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 21.95 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/_Spydaz_Web_AI_BIBLE_002 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 6.35 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/_Spydaz_Web_AI_BIBLE_002 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 1.74 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/_Spydaz_Web_AI_BIBLE_002 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 4.59 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/_Spydaz_Web_AI_BIBLE_002 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 2.45 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/_Spydaz_Web_AI_BIBLE_002 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 4.09 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=LeroyDyer/_Spydaz_Web_AI_BIBLE_002 name: Open LLM Leaderboard --- # the bible model : this model has been fit ! for the bible ( king james ! ) it is very good at returning verse ! and chapter ! if the context was long enough it could recall the chapter ! I trained this model ofr creating timelines with the bible as well as having a bible inside my model to ask questions ! hence i over fit the bible to reduce hallucenations ! hence the exactness ! this also opened another task of recalling whole storys or articles and books : now the model is well trained for this recall task : once a book is semi fit its fit ! and can be recalled ! so NOW : it can take book training ! I also use this model for my merges ro keep the books aligned ! - **Developed by:** LeroyDyer - **License:** apache-2.0 - **Finetuned from model :** LeroyDyer/_Spydaz_Web_AI_ChatQA_001_UFT This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/LeroyDyer___Spydaz_Web_AI_BIBLE_002-details) | Metric |Value| |-------------------|----:| |Avg. | 6.86| |IFEval (0-Shot) |21.95| |BBH (3-Shot) | 6.35| |MATH Lvl 5 (4-Shot)| 1.74| |GPQA (0-shot) | 4.59| |MuSR (0-shot) | 2.45| |MMLU-PRO (5-shot) | 4.09|