--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: wav2vec2-large-mms-1b-nhi-ft-3hrs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 0.6467391304347826 --- # wav2vec2-large-mms-1b-nhi-ft-3hrs This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7237 - Wer: 0.6467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.6463 | 0.4149 | 100 | 1.0969 | 0.7919 | | 1.1669 | 0.8299 | 200 | 0.8578 | 0.7023 | | 0.987 | 1.2448 | 300 | 0.7607 | 0.6603 | | 0.9324 | 1.6598 | 400 | 0.7237 | 0.6467 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.4.0 - Datasets 2.19.1 - Tokenizers 0.19.1