File size: 2,023 Bytes
4e0040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- accuracy
model-index:
- name: distilbert-sql-timeout-classifier-with-features-4096-sql-normalized
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: generator
      type: generator
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8906033190875284
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-sql-timeout-classifier-with-features-4096-sql-normalized

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5598
- Accuracy: 0.8906

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5057        | 1.0   | 1938 | 0.4010          | 0.8793   |
| 0.3304        | 2.0   | 3876 | 0.4271          | 0.8945   |
| 0.2143        | 3.0   | 5814 | 0.4978          | 0.8872   |
| 0.2079        | 4.0   | 7752 | 0.6021          | 0.8776   |
| 0.1329        | 5.0   | 9690 | 0.5598          | 0.8906   |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2