--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - generator metrics: - accuracy model-index: - name: distilbert-sql-timeout-classifier-with-features-4096-sql-normalized results: - task: name: Text Classification type: text-classification dataset: name: generator type: generator config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8906033190875284 --- # distilbert-sql-timeout-classifier-with-features-4096-sql-normalized This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.5598 - Accuracy: 0.8906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5057 | 1.0 | 1938 | 0.4010 | 0.8793 | | 0.3304 | 2.0 | 3876 | 0.4271 | 0.8945 | | 0.2143 | 3.0 | 5814 | 0.4978 | 0.8872 | | 0.2079 | 4.0 | 7752 | 0.6021 | 0.8776 | | 0.1329 | 5.0 | 9690 | 0.5598 | 0.8906 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2