Lifehouse commited on
Commit
b095896
·
verified ·
1 Parent(s): 140d5c0

End of training

Browse files
Files changed (2) hide show
  1. README.md +88 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - generator
8
+ metrics:
9
+ - recall
10
+ - precision
11
+ - accuracy
12
+ model-index:
13
+ - name: distilbert-sql-timeout-classifier-with-trained-tokenizer
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: generator
20
+ type: generator
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.7370441458733206
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.15262321144674085
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 0.8761327655857626
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # distilbert-sql-timeout-classifier-with-trained-tokenizer
40
+
41
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the generator dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 0.4898
44
+ - Recall: 0.7370
45
+ - Precision: 0.1526
46
+ - Affect Rate: 0.1164
47
+ - Accuracy: 0.8761
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 2e-05
67
+ - train_batch_size: 4
68
+ - eval_batch_size: 4
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - num_epochs: 3
73
+
74
+ ### Training results
75
+
76
+ | Training Loss | Epoch | Step | Validation Loss | Recall | Precision | Affect Rate | Accuracy |
77
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:-----------:|:--------:|
78
+ | 0.5018 | 1.0 | 1946 | 0.3744 | 0.6929 | 0.1758 | 0.0924 | 0.8988 |
79
+ | 0.3196 | 2.0 | 3892 | 0.4938 | 0.7390 | 0.1294 | 0.1414 | 0.8512 |
80
+ | 0.2219 | 3.0 | 5838 | 0.4898 | 0.7370 | 0.1526 | 0.1164 | 0.8761 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.38.1
86
+ - Pytorch 2.2.1+cu121
87
+ - Datasets 2.17.1
88
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d1b8a7b2fea7285d9e152bd32d8554b141a7161a36fe70258bfef2afefd3d6d4
3
  size 286455040
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa925adc7d0f08fae4af37b4642e63157e0296d026813487bfcbf255901fedef
3
  size 286455040