binhcode25 commited on
Commit
132ae0e
1 Parent(s): c0d3062

Add new SentenceTransformer model.

Browse files
Files changed (4) hide show
  1. README.md +45 -0
  2. config.json +1 -1
  3. model_description.json +6 -0
  4. model_descriptions.json +6 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: light-embed
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+
9
+ ---
10
+
11
+ # sbert-all-MiniLM-L6-v2-onnx
12
+
13
+ This is the ONNX version of the Sentence Transformers model sentence-transformers/all-MiniLM-L6-v2 for sentence embedding, optimized for speed and lightweight performance. By utilizing onnxruntime and tokenizers instead of heavier libraries like sentence-transformers and transformers, this version ensures a smaller library size and faster execution. Below are the details of the model:
14
+ - Base model: sentence-transformers/all-MiniLM-L6-v2
15
+ - Embedding dimension: 384
16
+ - Max sequence length: 256
17
+ - File size on disk: 0.08 GB
18
+
19
+ This ONNX model consists all components in the original sentence transformer model:
20
+ Transformer, Pooling, Normalize
21
+
22
+ <!--- Describe your model here -->
23
+
24
+ ## Usage (LightEmbed)
25
+
26
+ Using this model becomes easy when you have [LightEmbed](https://www.light-embed.net) installed:
27
+
28
+ ```
29
+ pip install -U light-embed
30
+ ```
31
+
32
+ Then you can use the model like this:
33
+
34
+ ```python
35
+ from light_embed import TextEmbedding
36
+ sentences = ["This is an example sentence", "Each sentence is converted"]
37
+
38
+ model = TextEmbedding('sentence-transformers/all-MiniLM-L6-v2')
39
+ embeddings = model.encode(sentences)
40
+ print(embeddings)
41
+ ```
42
+
43
+ ## Citing & Authors
44
+
45
+ Binh Nguyen / [email protected]
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "nreimers/MiniLM-L6-H384-uncased",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
  "architectures": [
4
  "BertModel"
5
  ],
model_description.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "base_model": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "embedding_dim": 384,
4
+ "max_seq_length": 256,
5
+ "model_file_size (GB)": 0.08
6
+ }
model_descriptions.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "base_model": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "embedding_dim": 384,
4
+ "max_seq_length": 256,
5
+ "model_file_size (GB)": 0.08
6
+ }