Update README.md
Browse files
README.md
CHANGED
@@ -34,104 +34,7 @@ Class-incremental/Continual image segmentation (CIS) aims to train an image segm
|
|
34 |
- [x] Release the weights in the next few days.
|
35 |
- [x] More detailed instructions.
|
36 |
|
37 |
-
|
38 |
-
## 💡 Quick Start
|
39 |
-
### 1. Set up environments
|
40 |
-
|
41 |
-
```bash
|
42 |
-
conda create --name simcis python=3.8 -y
|
43 |
-
conda activate simcis
|
44 |
-
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 -c pytorch -c nvidia
|
45 |
-
pip install -U opencv-python
|
46 |
-
|
47 |
-
git clone [email protected]:SooLab/SimCIS.git
|
48 |
-
cd SimCIS
|
49 |
-
|
50 |
-
git clone [email protected]:facebookresearch/detectron2.git
|
51 |
-
cd detectron2
|
52 |
-
pip install -e .
|
53 |
-
pip install git+https://github.com/cocodataset/panopticapi.git
|
54 |
-
pip install git+https://github.com/mcordts/cityscapesScripts.git
|
55 |
-
cd ..
|
56 |
-
pip install -r requirements.txt
|
57 |
-
|
58 |
-
```
|
59 |
-
|
60 |
-
#### CUDA kernel for MSDeformAttn
|
61 |
-
After preparing the required environment, run the following command to compile CUDA kernel for MSDeformAttn:
|
62 |
-
|
63 |
-
`CUDA_HOME` must be defined and points to the directory of the installed CUDA toolkit.
|
64 |
-
|
65 |
-
```bash
|
66 |
-
cd mask2former/modeling/pixel_decoder/ops
|
67 |
-
sh make.sh
|
68 |
-
```
|
69 |
-
|
70 |
-
## 2. Data Preparation
|
71 |
-
|
72 |
-
We follow the previous work [Balconpas](https://github.com/jinpeng0528/BalConpas/tree/master) to prepare the training data.
|
73 |
-
|
74 |
-
Please download the ADE20K dataset and its instance annotation from [here](http://sceneparsing.csail.mit.edu/), then place the dataset in or create a symbolic link to the `./datasets` directory. The structure of data path should be organized as follows:
|
75 |
-
```
|
76 |
-
ADEChallengeData2016/
|
77 |
-
images/
|
78 |
-
annotations/
|
79 |
-
objectInfo150.txt
|
80 |
-
sceneCategories.txt
|
81 |
-
annotations_instance/
|
82 |
-
annotations_detectron2/
|
83 |
-
ade20k_panoptic_{train,val}.json
|
84 |
-
ade20k_panoptic_{train,val}/
|
85 |
-
ade20k_instance_{train,val}.json
|
86 |
-
```
|
87 |
-
The directory `annotations_detectron2` is generated by running `python datasets/prepare_ade20k_sem_seg.py`.
|
88 |
-
Then, run `python datasets/prepare_ade20k_pan_seg.py` to combine semantic and instance annotations for panoptic annotations and run `python datasets/prepare_ade20k_ins_seg.py` to extract instance annotations in COCO format.
|
89 |
-
|
90 |
-
To fit the requirements of continual segmentation tasks, run `python continual/prepare_datasets.py` to reorganize the annotations (reorganized annotations will be placed in `./json`).
|
91 |
-
|
92 |
-
#### Example data preparation
|
93 |
-
```bash
|
94 |
-
# for Mask2Former
|
95 |
-
cd datasets
|
96 |
-
wget http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip
|
97 |
-
unzip ADEChallengeData2016.zip
|
98 |
-
cd ADEChallengeData2016
|
99 |
-
wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
|
100 |
-
tar -xvf annotations_instance.tar
|
101 |
-
cd ../..
|
102 |
-
python datasets/prepare_ade20k_sem_seg.py
|
103 |
-
python datasets/prepare_ade20k_pan_seg.py
|
104 |
-
python datasets/prepare_ade20k_ins_seg.py
|
105 |
-
|
106 |
-
# for continual segmentation
|
107 |
-
python continual/prepare_datasets.py
|
108 |
-
```
|
109 |
-
|
110 |
-
## 🔥 Training
|
111 |
-
|
112 |
-
Download the weights of the base step(step1) from [huggingface](https://huggingface.co/LightningNO1/SimCIS).
|
113 |
-
|
114 |
-
Please follow the [scripts](./scripts) to train SimCIS!
|
115 |
-
|
116 |
-
For example:
|
117 |
-
|
118 |
-
```bash
|
119 |
-
bash scripts/pan_100-5.sh
|
120 |
-
```
|
121 |
-
|
122 |
-
## ⚡️ Evaluation
|
123 |
-
|
124 |
-
Download the weights from [huggingface](https://huggingface.co/LightningNO1/SimCIS).
|
125 |
-
|
126 |
-
Please follow the [scripts](./scripts) to evaluate SimCIS!
|
127 |
-
|
128 |
-
For example:
|
129 |
-
|
130 |
-
```bash
|
131 |
-
# 11 means the 11th step(last step for 100-5 setting)
|
132 |
-
bash scripts/panoptic_eval.sh 11
|
133 |
-
```
|
134 |
-
|
135 |
|
136 |
## 📖 Cite Us
|
137 |
If you find this repository useful in your research, please consider giving a star ⭐ and a citation
|
|
|
34 |
- [x] Release the weights in the next few days.
|
35 |
- [x] More detailed instructions.
|
36 |
|
37 |
+
## PLEASE FOLLOW this [Github Repo](https://github.com/SooLab/SimCIS) to use the weights!!!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
## 📖 Cite Us
|
40 |
If you find this repository useful in your research, please consider giving a star ⭐ and a citation
|