LightningNO1 commited on
Commit
ba14eeb
·
verified ·
1 Parent(s): 64d8083

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -98
README.md CHANGED
@@ -34,104 +34,7 @@ Class-incremental/Continual image segmentation (CIS) aims to train an image segm
34
  - [x] Release the weights in the next few days.
35
  - [x] More detailed instructions.
36
 
37
-
38
- ## 💡 Quick Start
39
- ### 1. Set up environments
40
-
41
- ```bash
42
- conda create --name simcis python=3.8 -y
43
- conda activate simcis
44
- conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 -c pytorch -c nvidia
45
- pip install -U opencv-python
46
-
47
- git clone [email protected]:SooLab/SimCIS.git
48
- cd SimCIS
49
-
50
- git clone [email protected]:facebookresearch/detectron2.git
51
- cd detectron2
52
- pip install -e .
53
- pip install git+https://github.com/cocodataset/panopticapi.git
54
- pip install git+https://github.com/mcordts/cityscapesScripts.git
55
- cd ..
56
- pip install -r requirements.txt
57
-
58
- ```
59
-
60
- #### CUDA kernel for MSDeformAttn
61
- After preparing the required environment, run the following command to compile CUDA kernel for MSDeformAttn:
62
-
63
- `CUDA_HOME` must be defined and points to the directory of the installed CUDA toolkit.
64
-
65
- ```bash
66
- cd mask2former/modeling/pixel_decoder/ops
67
- sh make.sh
68
- ```
69
-
70
- ## 2. Data Preparation
71
-
72
- We follow the previous work [Balconpas](https://github.com/jinpeng0528/BalConpas/tree/master) to prepare the training data.
73
-
74
- Please download the ADE20K dataset and its instance annotation from [here](http://sceneparsing.csail.mit.edu/), then place the dataset in or create a symbolic link to the `./datasets` directory. The structure of data path should be organized as follows:
75
- ```
76
- ADEChallengeData2016/
77
- images/
78
- annotations/
79
- objectInfo150.txt
80
- sceneCategories.txt
81
- annotations_instance/
82
- annotations_detectron2/
83
- ade20k_panoptic_{train,val}.json
84
- ade20k_panoptic_{train,val}/
85
- ade20k_instance_{train,val}.json
86
- ```
87
- The directory `annotations_detectron2` is generated by running `python datasets/prepare_ade20k_sem_seg.py`.
88
- Then, run `python datasets/prepare_ade20k_pan_seg.py` to combine semantic and instance annotations for panoptic annotations and run `python datasets/prepare_ade20k_ins_seg.py` to extract instance annotations in COCO format.
89
-
90
- To fit the requirements of continual segmentation tasks, run `python continual/prepare_datasets.py` to reorganize the annotations (reorganized annotations will be placed in `./json`).
91
-
92
- #### Example data preparation
93
- ```bash
94
- # for Mask2Former
95
- cd datasets
96
- wget http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip
97
- unzip ADEChallengeData2016.zip
98
- cd ADEChallengeData2016
99
- wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
100
- tar -xvf annotations_instance.tar
101
- cd ../..
102
- python datasets/prepare_ade20k_sem_seg.py
103
- python datasets/prepare_ade20k_pan_seg.py
104
- python datasets/prepare_ade20k_ins_seg.py
105
-
106
- # for continual segmentation
107
- python continual/prepare_datasets.py
108
- ```
109
-
110
- ## 🔥 Training
111
-
112
- Download the weights of the base step(step1) from [huggingface](https://huggingface.co/LightningNO1/SimCIS).
113
-
114
- Please follow the [scripts](./scripts) to train SimCIS!
115
-
116
- For example:
117
-
118
- ```bash
119
- bash scripts/pan_100-5.sh
120
- ```
121
-
122
- ## ⚡️ Evaluation
123
-
124
- Download the weights from [huggingface](https://huggingface.co/LightningNO1/SimCIS).
125
-
126
- Please follow the [scripts](./scripts) to evaluate SimCIS!
127
-
128
- For example:
129
-
130
- ```bash
131
- # 11 means the 11th step(last step for 100-5 setting)
132
- bash scripts/panoptic_eval.sh 11
133
- ```
134
-
135
 
136
  ## 📖 Cite Us
137
  If you find this repository useful in your research, please consider giving a star ⭐ and a citation
 
34
  - [x] Release the weights in the next few days.
35
  - [x] More detailed instructions.
36
 
37
+ ## PLEASE FOLLOW this [Github Repo](https://github.com/SooLab/SimCIS) to use the weights!!!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  ## 📖 Cite Us
40
  If you find this repository useful in your research, please consider giving a star ⭐ and a citation