Update README.md to include diffusers usage (#42)
Browse files- Update README.md (136ab03ded9afa885db21e1d35c317d3014a8b18)
Co-authored-by: Sayak Paul <[email protected]>
README.md
CHANGED
@@ -92,6 +92,72 @@ python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --height HEIGHT --width
|
|
92 |
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH --num_frames NUM_FRAMES --seed SEED
|
93 |
```
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
## Limitations
|
96 |
- This model is not intended or able to provide factual information.
|
97 |
- As a statistical model this checkpoint might amplify existing societal biases.
|
|
|
92 |
python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH --num_frames NUM_FRAMES --seed SEED
|
93 |
```
|
94 |
|
95 |
+
### Diffusers 🧨
|
96 |
+
|
97 |
+
LTX Video is compatible with the [Diffusers Python library](https://huggingface.co/docs/diffusers/main/en/index). It supports both text-to-video and image-to-video generation.
|
98 |
+
|
99 |
+
Make sure you install `diffusers` before trying out the examples below.
|
100 |
+
|
101 |
+
```bash
|
102 |
+
pip install -U git+https://github.com/huggingface/diffusers
|
103 |
+
```
|
104 |
+
|
105 |
+
Now, you can run the examples below:
|
106 |
+
|
107 |
+
```py
|
108 |
+
import torch
|
109 |
+
from diffusers import LTXPipeline
|
110 |
+
from diffusers.utils import export_to_video
|
111 |
+
|
112 |
+
pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16)
|
113 |
+
pipe.to("cuda")
|
114 |
+
|
115 |
+
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
|
116 |
+
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
|
117 |
+
|
118 |
+
video = pipe(
|
119 |
+
prompt=prompt,
|
120 |
+
negative_prompt=negative_prompt,
|
121 |
+
width=704,
|
122 |
+
height=480,
|
123 |
+
num_frames=161,
|
124 |
+
num_inference_steps=50,
|
125 |
+
).frames[0]
|
126 |
+
export_to_video(video, "output.mp4", fps=24)
|
127 |
+
```
|
128 |
+
|
129 |
+
For image-to-video:
|
130 |
+
|
131 |
+
```py
|
132 |
+
import torch
|
133 |
+
from diffusers import LTXImageToVideoPipeline
|
134 |
+
from diffusers.utils import export_to_video, load_image
|
135 |
+
|
136 |
+
pipe = LTXImageToVideoPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16)
|
137 |
+
pipe.to("cuda")
|
138 |
+
|
139 |
+
image = load_image(
|
140 |
+
"https://huggingface.co/datasets/a-r-r-o-w/tiny-meme-dataset-captioned/resolve/main/images/8.png"
|
141 |
+
)
|
142 |
+
prompt = "A young girl stands calmly in the foreground, looking directly at the camera, as a house fire rages in the background. Flames engulf the structure, with smoke billowing into the air. Firefighters in protective gear rush to the scene, a fire truck labeled '38' visible behind them. The girl's neutral expression contrasts sharply with the chaos of the fire, creating a poignant and emotionally charged scene."
|
143 |
+
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
|
144 |
+
|
145 |
+
video = pipe(
|
146 |
+
image=image,
|
147 |
+
prompt=prompt,
|
148 |
+
negative_prompt=negative_prompt,
|
149 |
+
width=704,
|
150 |
+
height=480,
|
151 |
+
num_frames=161,
|
152 |
+
num_inference_steps=50,
|
153 |
+
).frames[0]
|
154 |
+
export_to_video(video, "output.mp4", fps=24)
|
155 |
+
```
|
156 |
+
|
157 |
+
To learn more, check out the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video).
|
158 |
+
|
159 |
+
Diffusers also supports directly loading from the original LTX checkpoints using the `from_single_file()` method. Check out [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video#loading-single-files) to learn more.
|
160 |
+
|
161 |
## Limitations
|
162 |
- This model is not intended or able to provide factual information.
|
163 |
- As a statistical model this checkpoint might amplify existing societal biases.
|