PPO LunarLander-v2 trained agent
Browse files- LunarLander_PPO_agent_v3.zip +3 -0
- LunarLander_PPO_agent_v3/_stable_baselines3_version +1 -0
- LunarLander_PPO_agent_v3/data +94 -0
- LunarLander_PPO_agent_v3/policy.optimizer.pth +3 -0
- LunarLander_PPO_agent_v3/policy.pth +3 -0
- LunarLander_PPO_agent_v3/pytorch_variables.pth +3 -0
- LunarLander_PPO_agent_v3/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LunarLander_PPO_agent_v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e08956a67c70a8a7f12a44e4412cdadcd2d991248caaae8a3a662915241cf2b8
|
3 |
+
size 146368
|
LunarLander_PPO_agent_v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
LunarLander_PPO_agent_v3/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1796bcb3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1796bcb440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1796bcb4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1796bcb560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1796bcb5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1796bcb680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1796bcb710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1796bcb7a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1796bcb830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1796bcb8c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1796bcb950>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1796c10c90>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 1501184,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1660066742.4797635,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIArFb7d2B8/gfwOvazo475lOQ2+3Fw7PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0007893333333333086,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/Wg4ZS42ckCUhpRSlIwBbJRL3owBdJRHQL+V4oRIz311fZQoaAZoCWgPQwh5HtydNXdwQJSGlFKUaBVLuWgWR0C/lh6wt8NQdX2UKGgGaAloD0MI9ifxudNHdECUhpRSlGgVS9JoFkdAv5eUcebNKXV9lChoBmgJaA9DCBzSqMAJ+3BAlIaUUpRoFUvgaBZHQL+X35bhWHV1fZQoaAZoCWgPQwgxfERMSc9wQJSGlFKUaBVLyGgWR0C/mCRPsRg7dX2UKGgGaAloD0MICf1Mve7ZckCUhpRSlGgVS8xoFkdAv5hoT8HfM3V9lChoBmgJaA9DCNb/OcyXy3JAlIaUUpRoFUviaBZHQL+YtS4OMER1fZQoaAZoCWgPQwiL3qmAey5vQJSGlFKUaBVLxWgWR0C/mPlkpZwGdX2UKGgGaAloD0MIzsEzockgc0CUhpRSlGgVS+NoFkdAv5lHHq/ucHV9lChoBmgJaA9DCNkJL8HpTHJAlIaUUpRoFUvOaBZHQL+Zi1LJ0XB1fZQoaAZoCWgPQwirI0c6w3xwQJSGlFKUaBVL0mgWR0C/mdDiCJ40dX2UKGgGaAloD0MIT3gJTj1tcUCUhpRSlGgVS9loFkdAv5tG/wiJO3V9lChoBmgJaA9DCIlccAZ/DW9AlIaUUpRoFUvFaBZHQL+bhp97Wup1fZQoaAZoCWgPQwicpPljmuZxQJSGlFKUaBVLyWgWR0C/m8adH2AYdX2UKGgGaAloD0MI9DehEAE3cECUhpRSlGgVS81oFkdAv5wLiS7oS3V9lChoBmgJaA9DCHiZYaPsXHNAlIaUUpRoFUvQaBZHQL+cUNgBtDV1fZQoaAZoCWgPQwhwQEtXsM5SQJSGlFKUaBVLimgWR0C/nH194NZvdX2UKGgGaAloD0MIhJz3/3E+cUCUhpRSlGgVS89oFkdAv5zCgTRIBnV9lChoBmgJaA9DCHXJOEay2nBAlIaUUpRoFUvKaBZHQL+dCCOmzjZ1fZQoaAZoCWgPQwiGAUuuor5yQJSGlFKUaBVLxmgWR0C/nUpWaMJhdX2UKGgGaAloD0MIrmTHRiAsb0CUhpRSlGgVS9FoFkdAv52Qw35vcnV9lChoBmgJaA9DCEcBomAGo3BAlIaUUpRoFUvaaBZHQL+d3E5Qxet1fZQoaAZoCWgPQwhiEi7kEY1yQJSGlFKUaBVLyGgWR0C/n0+PNmlJdX2UKGgGaAloD0MItr+zPTpsc0CUhpRSlGgVS9hoFkdAv5+Td30PH3V9lChoBmgJaA9DCHeFPlhGXnNAlIaUUpRoFUvSaBZHQL+f2QSSNfh1fZQoaAZoCWgPQwi0Oc5tAkFzQJSGlFKUaBVL4WgWR0C/oCQwTM7mdX2UKGgGaAloD0MIWrqCbcTacUCUhpRSlGgVS8ZoFkdAv6BlpdrwfHV9lChoBmgJaA9DCM0+j1EevnFAlIaUUpRoFUvPaBZHQL+gq4GUwBZ1fZQoaAZoCWgPQwi3zyozZeJxQJSGlFKUaBVL5WgWR0C/oPk4ecQRdX2UKGgGaAloD0MIGCXoLzS9cECUhpRSlGgVS9toFkdAv6E//rB0p3V9lChoBmgJaA9DCEvLSL1nDHJAlIaUUpRoFUvKaBZHQL+hhOtW+491fZQoaAZoCWgPQwgN38K6cZFxQJSGlFKUaBVL2WgWR0C/owMz67/XdX2UKGgGaAloD0MIiEZ3EHsdcECUhpRSlGgVS9JoFkdAv6NGy7f513V9lChoBmgJaA9DCNS19j4V73NAlIaUUpRoFUvjaBZHQL+jlrDZUUB1fZQoaAZoCWgPQwgAxciS+WByQJSGlFKUaBVLxGgWR0C/o9Yx1xKhdX2UKGgGaAloD0MIYVERp5PzckCUhpRSlGgVS+ZoFkdAv6QiEh7mdXV9lChoBmgJaA9DCDdQ4J180nBAlIaUUpRoFUvOaBZHQL+kaRKpT/B1fZQoaAZoCWgPQwiYTus2KOJzQJSGlFKUaBVL9mgWR0C/pLyfQKKHdX2UKGgGaAloD0MI3QcgtUmAc0CUhpRSlGgVS/RoFkdAv6USon8baXV9lChoBmgJaA9DCBiZgF9jPnFAlIaUUpRoFUveaBZHQL+lXgyuZCx1fZQoaAZoCWgPQwg9X7NctihxQJSGlFKUaBVLxmgWR0C/pZ7nDBM0dX2UKGgGaAloD0MI7MIPzueLc0CUhpRSlGgVS9BoFkdAv6cXxUedTnV9lChoBmgJaA9DCLlUpS0uRXNAlIaUUpRoFUvZaBZHQL+nYoDxLCh1fZQoaAZoCWgPQwiTGtoALDFyQJSGlFKUaBVLymgWR0C/p6arFOwgdX2UKGgGaAloD0MIcZAQ5Ys+YkCUhpRSlGgVTegDaBZHQL+pgYbKifx1fZQoaAZoCWgPQwg6AyMv665wQJSGlFKUaBVL22gWR0C/qceO4oZydX2UKGgGaAloD0MIcf+R6ZBuckCUhpRSlGgVS/poFkdAv6tUW+GoJnV9lChoBmgJaA9DCHh6pSxD6nFAlIaUUpRoFUvIaBZHQL+rleyzHCJ1fZQoaAZoCWgPQwgkfVpFv8txQJSGlFKUaBVL22gWR0C/q+JGz8gqdX2UKGgGaAloD0MIKENVTOWFckCUhpRSlGgVS9VoFkdAv6wq4mTkhnV9lChoBmgJaA9DCA3jbhAtI3FAlIaUUpRoFUvPaBZHQL+sb9aEBbR1fZQoaAZoCWgPQwieQq7Us9JwQJSGlFKUaBVLzGgWR0C/rLHcUM5PdX2UKGgGaAloD0MIGTigpauQcECUhpRSlGgVS7hoFkdAv6zxswco6XV9lChoBmgJaA9DCOXwSSfSvnJAlIaUUpRoFUvYaBZHQL+tOiHZbpx1fZQoaAZoCWgPQwiQos7cw9xxQJSGlFKUaBVLu2gWR0C/rXi925hCdX2UKGgGaAloD0MIVmMJa2PNYUCUhpRSlGgVTegDaBZHQL+woD9Oymh1fZQoaAZoCWgPQwhFD3wMVm1yQJSGlFKUaBVL8mgWR0C/sPbV8Ti9dX2UKGgGaAloD0MIDTSfczf5cECUhpRSlGgVS+toFkdAv7FGH9FWn3V9lChoBmgJaA9DCMTMPo+R73FAlIaUUpRoFUvzaBZHQL+xmgs9SuR1fZQoaAZoCWgPQwilviztlGZyQJSGlFKUaBVLumgWR0C/sdkyxiXqdX2UKGgGaAloD0MIJefEHto9cECUhpRSlGgVS91oFkdAv7IhnHvMKXV9lChoBmgJaA9DCDONJhcjUHBAlIaUUpRoFUvgaBZHQL+ybSpBHCp1fZQoaAZoCWgPQwg9uaZA5vluQJSGlFKUaBVLyWgWR0C/s99mg8KYdX2UKGgGaAloD0MIFAg7xerIckCUhpRSlGgVS9VoFkdAv7QpAgPmP3V9lChoBmgJaA9DCGVVhJsMYnJAlIaUUpRoFUvpaBZHQL+0edsBQvZ1fZQoaAZoCWgPQwjmApfHGnpxQJSGlFKUaBVL52gWR0C/tMW2Xsw+dX2UKGgGaAloD0MINjrnpzjRb0CUhpRSlGgVS9toFkdAv7UM45tFa3V9lChoBmgJaA9DCH2zzY2p1HFAlIaUUpRoFUu5aBZHQL+1TT2WY4R1fZQoaAZoCWgPQwjg2R69YdRwQJSGlFKUaBVL4WgWR0C/tZuXRgJDdX2UKGgGaAloD0MIR6ta0hEHc0CUhpRSlGgVS9ZoFkdAv7Xnj94u9XV9lChoBmgJaA9DCC3OGOaEFW9AlIaUUpRoFUvVaBZHQL+2Lhl18st1fZQoaAZoCWgPQwgQr+sX7HtwQJSGlFKUaBVL3GgWR0C/t6iv5gw5dX2UKGgGaAloD0MIJqd2hqldSUCUhpRSlGgVS59oFkdAv7fcgieNDXV9lChoBmgJaA9DCPiKbr1mhnJAlIaUUpRoFUvcaBZHQL+4Jthd+od1fZQoaAZoCWgPQwiIvruVZaRxQJSGlFKUaBVLvWgWR0C/uGl3dKukdX2UKGgGaAloD0MIaeId4MnickCUhpRSlGgVS+doFkdAv7i3xb0OE3V9lChoBmgJaA9DCMjRHFk5inFAlIaUUpRoFUvAaBZHQL+49/pMYdh1fZQoaAZoCWgPQwiYpghw+jFyQJSGlFKUaBVL0GgWR0C/uT0piI+GdX2UKGgGaAloD0MIdowrLg6ackCUhpRSlGgVS/RoFkdAv7mROwgTy3V9lChoBmgJaA9DCGSSkbMw6W9AlIaUUpRoFUvMaBZHQL+50cynDSB1fZQoaAZoCWgPQwhyGqIK/5ZzQJSGlFKUaBVNBAFoFkdAv7otWfbsW3V9lChoBmgJaA9DCO3YCMTriXFAlIaUUpRoFUvTaBZHQL+7sgh8pkR1fZQoaAZoCWgPQwgm32xzY/xvQJSGlFKUaBVL1GgWR0C/u/j+WGATdX2UKGgGaAloD0MItaZ5x2lycUCUhpRSlGgVS+hoFkdAv7xFUHY6GXV9lChoBmgJaA9DCJW3I5wWEnJAlIaUUpRoFUvfaBZHQL+8kGSIP9V1fZQoaAZoCWgPQwgXnwJgPIVuQJSGlFKUaBVL8WgWR0C/vOCExqO+dX2UKGgGaAloD0MIHVn5ZfD4cECUhpRSlGgVS8VoFkdAv70ldnkDIXV9lChoBmgJaA9DCPXXKyz4BXFAlIaUUpRoFUvBaBZHQL+9Zk+X7ch1fZQoaAZoCWgPQwigpwGDJLFyQJSGlFKUaBVL1mgWR0C/va1/pdKNdX2UKGgGaAloD0MIhGIraFoUcUCUhpRSlGgVS79oFkdAv73sv6CUYHV9lChoBmgJaA9DCBzTE5Z4P3FAlIaUUpRoFUvNaBZHQL++M9vCMxZ1fZQoaAZoCWgPQwhpOdBDLQBzQJSGlFKUaBVLz2gWR0C/v6+9Ba9sdX2UKGgGaAloD0MIQUerWlK4cUCUhpRSlGgVS9poFkdAv7/471ZkkXV9lChoBmgJaA9DCEonEky1TXBAlIaUUpRoFUvSaBZHQL/AQxPO6d11fZQoaAZoCWgPQwiILqhvGfVuQJSGlFKUaBVL0WgWR0C/wIzVUdaMdX2UKGgGaAloD0MIxeOiWkRlckCUhpRSlGgVS+BoFkdAv8DWlBQem3V9lChoBmgJaA9DCAjMQ6a8gXFAlIaUUpRoFUvpaBZHQL/BJaOPvKF1fZQoaAZoCWgPQwgUQZyHE6dxQJSGlFKUaBVNFAFoFkdAv8GIu27Wd3V9lChoBmgJaA9DCLHBwkmam3FAlIaUUpRoFUvNaBZHQL/BzqzZ6D51fZQoaAZoCWgPQwh81jVajmdyQJSGlFKUaBVL72gWR0C/wiG+K0ladWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 12120,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander_PPO_agent_v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0b3ae91292d6e74c4a85885d47077cedc9e1e484793cc73a8be2cd8d69dbe01
|
3 |
+
size 87865
|
LunarLander_PPO_agent_v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3e9c3384a241902ffe2d24cfb83f557f0bee83c749e49dbcad1f336388e8801
|
3 |
+
size 43201
|
LunarLander_PPO_agent_v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander_PPO_agent_v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 283.93 +/- 15.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1796bcb3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1796bcb440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1796bcb4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1796bcb560>", "_build": "<function ActorCriticPolicy._build at 0x7f1796bcb5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1796bcb680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1796bcb710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1796bcb7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1796bcb830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1796bcb8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1796bcb950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1796c10c90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1501184, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660066742.4797635, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIArFb7d2B8/gfwOvazo475lOQ2+3Fw7PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0007893333333333086, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/Wg4ZS42ckCUhpRSlIwBbJRL3owBdJRHQL+V4oRIz311fZQoaAZoCWgPQwh5HtydNXdwQJSGlFKUaBVLuWgWR0C/lh6wt8NQdX2UKGgGaAloD0MI9ifxudNHdECUhpRSlGgVS9JoFkdAv5eUcebNKXV9lChoBmgJaA9DCBzSqMAJ+3BAlIaUUpRoFUvgaBZHQL+X35bhWHV1fZQoaAZoCWgPQwgxfERMSc9wQJSGlFKUaBVLyGgWR0C/mCRPsRg7dX2UKGgGaAloD0MICf1Mve7ZckCUhpRSlGgVS8xoFkdAv5hoT8HfM3V9lChoBmgJaA9DCNb/OcyXy3JAlIaUUpRoFUviaBZHQL+YtS4OMER1fZQoaAZoCWgPQwiL3qmAey5vQJSGlFKUaBVLxWgWR0C/mPlkpZwGdX2UKGgGaAloD0MIzsEzockgc0CUhpRSlGgVS+NoFkdAv5lHHq/ucHV9lChoBmgJaA9DCNkJL8HpTHJAlIaUUpRoFUvOaBZHQL+Zi1LJ0XB1fZQoaAZoCWgPQwirI0c6w3xwQJSGlFKUaBVL0mgWR0C/mdDiCJ40dX2UKGgGaAloD0MIT3gJTj1tcUCUhpRSlGgVS9loFkdAv5tG/wiJO3V9lChoBmgJaA9DCIlccAZ/DW9AlIaUUpRoFUvFaBZHQL+bhp97Wup1fZQoaAZoCWgPQwicpPljmuZxQJSGlFKUaBVLyWgWR0C/m8adH2AYdX2UKGgGaAloD0MI9DehEAE3cECUhpRSlGgVS81oFkdAv5wLiS7oS3V9lChoBmgJaA9DCHiZYaPsXHNAlIaUUpRoFUvQaBZHQL+cUNgBtDV1fZQoaAZoCWgPQwhwQEtXsM5SQJSGlFKUaBVLimgWR0C/nH194NZvdX2UKGgGaAloD0MIhJz3/3E+cUCUhpRSlGgVS89oFkdAv5zCgTRIBnV9lChoBmgJaA9DCHXJOEay2nBAlIaUUpRoFUvKaBZHQL+dCCOmzjZ1fZQoaAZoCWgPQwiGAUuuor5yQJSGlFKUaBVLxmgWR0C/nUpWaMJhdX2UKGgGaAloD0MIrmTHRiAsb0CUhpRSlGgVS9FoFkdAv52Qw35vcnV9lChoBmgJaA9DCEcBomAGo3BAlIaUUpRoFUvaaBZHQL+d3E5Qxet1fZQoaAZoCWgPQwhiEi7kEY1yQJSGlFKUaBVLyGgWR0C/n0+PNmlJdX2UKGgGaAloD0MItr+zPTpsc0CUhpRSlGgVS9hoFkdAv5+Td30PH3V9lChoBmgJaA9DCHeFPlhGXnNAlIaUUpRoFUvSaBZHQL+f2QSSNfh1fZQoaAZoCWgPQwi0Oc5tAkFzQJSGlFKUaBVL4WgWR0C/oCQwTM7mdX2UKGgGaAloD0MIWrqCbcTacUCUhpRSlGgVS8ZoFkdAv6BlpdrwfHV9lChoBmgJaA9DCM0+j1EevnFAlIaUUpRoFUvPaBZHQL+gq4GUwBZ1fZQoaAZoCWgPQwi3zyozZeJxQJSGlFKUaBVL5WgWR0C/oPk4ecQRdX2UKGgGaAloD0MIGCXoLzS9cECUhpRSlGgVS9toFkdAv6E//rB0p3V9lChoBmgJaA9DCEvLSL1nDHJAlIaUUpRoFUvKaBZHQL+hhOtW+491fZQoaAZoCWgPQwgN38K6cZFxQJSGlFKUaBVL2WgWR0C/owMz67/XdX2UKGgGaAloD0MIiEZ3EHsdcECUhpRSlGgVS9JoFkdAv6NGy7f513V9lChoBmgJaA9DCNS19j4V73NAlIaUUpRoFUvjaBZHQL+jlrDZUUB1fZQoaAZoCWgPQwgAxciS+WByQJSGlFKUaBVLxGgWR0C/o9Yx1xKhdX2UKGgGaAloD0MIYVERp5PzckCUhpRSlGgVS+ZoFkdAv6QiEh7mdXV9lChoBmgJaA9DCDdQ4J180nBAlIaUUpRoFUvOaBZHQL+kaRKpT/B1fZQoaAZoCWgPQwiYTus2KOJzQJSGlFKUaBVL9mgWR0C/pLyfQKKHdX2UKGgGaAloD0MI3QcgtUmAc0CUhpRSlGgVS/RoFkdAv6USon8baXV9lChoBmgJaA9DCBiZgF9jPnFAlIaUUpRoFUveaBZHQL+lXgyuZCx1fZQoaAZoCWgPQwg9X7NctihxQJSGlFKUaBVLxmgWR0C/pZ7nDBM0dX2UKGgGaAloD0MI7MIPzueLc0CUhpRSlGgVS9BoFkdAv6cXxUedTnV9lChoBmgJaA9DCLlUpS0uRXNAlIaUUpRoFUvZaBZHQL+nYoDxLCh1fZQoaAZoCWgPQwiTGtoALDFyQJSGlFKUaBVLymgWR0C/p6arFOwgdX2UKGgGaAloD0MIcZAQ5Ys+YkCUhpRSlGgVTegDaBZHQL+pgYbKifx1fZQoaAZoCWgPQwg6AyMv665wQJSGlFKUaBVL22gWR0C/qceO4oZydX2UKGgGaAloD0MIcf+R6ZBuckCUhpRSlGgVS/poFkdAv6tUW+GoJnV9lChoBmgJaA9DCHh6pSxD6nFAlIaUUpRoFUvIaBZHQL+rleyzHCJ1fZQoaAZoCWgPQwgkfVpFv8txQJSGlFKUaBVL22gWR0C/q+JGz8gqdX2UKGgGaAloD0MIKENVTOWFckCUhpRSlGgVS9VoFkdAv6wq4mTkhnV9lChoBmgJaA9DCA3jbhAtI3FAlIaUUpRoFUvPaBZHQL+sb9aEBbR1fZQoaAZoCWgPQwieQq7Us9JwQJSGlFKUaBVLzGgWR0C/rLHcUM5PdX2UKGgGaAloD0MIGTigpauQcECUhpRSlGgVS7hoFkdAv6zxswco6XV9lChoBmgJaA9DCOXwSSfSvnJAlIaUUpRoFUvYaBZHQL+tOiHZbpx1fZQoaAZoCWgPQwiQos7cw9xxQJSGlFKUaBVLu2gWR0C/rXi925hCdX2UKGgGaAloD0MIVmMJa2PNYUCUhpRSlGgVTegDaBZHQL+woD9Oymh1fZQoaAZoCWgPQwhFD3wMVm1yQJSGlFKUaBVL8mgWR0C/sPbV8Ti9dX2UKGgGaAloD0MIDTSfczf5cECUhpRSlGgVS+toFkdAv7FGH9FWn3V9lChoBmgJaA9DCMTMPo+R73FAlIaUUpRoFUvzaBZHQL+xmgs9SuR1fZQoaAZoCWgPQwilviztlGZyQJSGlFKUaBVLumgWR0C/sdkyxiXqdX2UKGgGaAloD0MIJefEHto9cECUhpRSlGgVS91oFkdAv7IhnHvMKXV9lChoBmgJaA9DCDONJhcjUHBAlIaUUpRoFUvgaBZHQL+ybSpBHCp1fZQoaAZoCWgPQwg9uaZA5vluQJSGlFKUaBVLyWgWR0C/s99mg8KYdX2UKGgGaAloD0MIFAg7xerIckCUhpRSlGgVS9VoFkdAv7QpAgPmP3V9lChoBmgJaA9DCGVVhJsMYnJAlIaUUpRoFUvpaBZHQL+0edsBQvZ1fZQoaAZoCWgPQwjmApfHGnpxQJSGlFKUaBVL52gWR0C/tMW2Xsw+dX2UKGgGaAloD0MINjrnpzjRb0CUhpRSlGgVS9toFkdAv7UM45tFa3V9lChoBmgJaA9DCH2zzY2p1HFAlIaUUpRoFUu5aBZHQL+1TT2WY4R1fZQoaAZoCWgPQwjg2R69YdRwQJSGlFKUaBVL4WgWR0C/tZuXRgJDdX2UKGgGaAloD0MIR6ta0hEHc0CUhpRSlGgVS9ZoFkdAv7Xnj94u9XV9lChoBmgJaA9DCC3OGOaEFW9AlIaUUpRoFUvVaBZHQL+2Lhl18st1fZQoaAZoCWgPQwgQr+sX7HtwQJSGlFKUaBVL3GgWR0C/t6iv5gw5dX2UKGgGaAloD0MIJqd2hqldSUCUhpRSlGgVS59oFkdAv7fcgieNDXV9lChoBmgJaA9DCPiKbr1mhnJAlIaUUpRoFUvcaBZHQL+4Jthd+od1fZQoaAZoCWgPQwiIvruVZaRxQJSGlFKUaBVLvWgWR0C/uGl3dKukdX2UKGgGaAloD0MIaeId4MnickCUhpRSlGgVS+doFkdAv7i3xb0OE3V9lChoBmgJaA9DCMjRHFk5inFAlIaUUpRoFUvAaBZHQL+49/pMYdh1fZQoaAZoCWgPQwiYpghw+jFyQJSGlFKUaBVL0GgWR0C/uT0piI+GdX2UKGgGaAloD0MIdowrLg6ackCUhpRSlGgVS/RoFkdAv7mROwgTy3V9lChoBmgJaA9DCGSSkbMw6W9AlIaUUpRoFUvMaBZHQL+50cynDSB1fZQoaAZoCWgPQwhyGqIK/5ZzQJSGlFKUaBVNBAFoFkdAv7otWfbsW3V9lChoBmgJaA9DCO3YCMTriXFAlIaUUpRoFUvTaBZHQL+7sgh8pkR1fZQoaAZoCWgPQwgm32xzY/xvQJSGlFKUaBVL1GgWR0C/u/j+WGATdX2UKGgGaAloD0MItaZ5x2lycUCUhpRSlGgVS+hoFkdAv7xFUHY6GXV9lChoBmgJaA9DCJW3I5wWEnJAlIaUUpRoFUvfaBZHQL+8kGSIP9V1fZQoaAZoCWgPQwgXnwJgPIVuQJSGlFKUaBVL8WgWR0C/vOCExqO+dX2UKGgGaAloD0MIHVn5ZfD4cECUhpRSlGgVS8VoFkdAv70ldnkDIXV9lChoBmgJaA9DCPXXKyz4BXFAlIaUUpRoFUvBaBZHQL+9Zk+X7ch1fZQoaAZoCWgPQwigpwGDJLFyQJSGlFKUaBVL1mgWR0C/va1/pdKNdX2UKGgGaAloD0MIhGIraFoUcUCUhpRSlGgVS79oFkdAv73sv6CUYHV9lChoBmgJaA9DCBzTE5Z4P3FAlIaUUpRoFUvNaBZHQL++M9vCMxZ1fZQoaAZoCWgPQwhpOdBDLQBzQJSGlFKUaBVLz2gWR0C/v6+9Ba9sdX2UKGgGaAloD0MIQUerWlK4cUCUhpRSlGgVS9poFkdAv7/471ZkkXV9lChoBmgJaA9DCEonEky1TXBAlIaUUpRoFUvSaBZHQL/AQxPO6d11fZQoaAZoCWgPQwiILqhvGfVuQJSGlFKUaBVL0WgWR0C/wIzVUdaMdX2UKGgGaAloD0MIxeOiWkRlckCUhpRSlGgVS+BoFkdAv8DWlBQem3V9lChoBmgJaA9DCAjMQ6a8gXFAlIaUUpRoFUvpaBZHQL/BJaOPvKF1fZQoaAZoCWgPQwgUQZyHE6dxQJSGlFKUaBVNFAFoFkdAv8GIu27Wd3V9lChoBmgJaA9DCLHBwkmam3FAlIaUUpRoFUvNaBZHQL/BzqzZ6D51fZQoaAZoCWgPQwh81jVajmdyQJSGlFKUaBVL72gWR0C/wiG+K0ladWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12120, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (198 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 283.9270227261289, "std_reward": 15.819483589086277, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-09T18:32:57.395013"}
|