PPO LunarLander-v2 trained agent
Browse files- LunarLander_PPO_agent_v4.zip +3 -0
- LunarLander_PPO_agent_v4/_stable_baselines3_version +1 -0
- LunarLander_PPO_agent_v4/data +94 -0
- LunarLander_PPO_agent_v4/policy.optimizer.pth +3 -0
- LunarLander_PPO_agent_v4/policy.pth +3 -0
- LunarLander_PPO_agent_v4/pytorch_variables.pth +3 -0
- LunarLander_PPO_agent_v4/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LunarLander_PPO_agent_v4.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fb3a35f55f3210fdb377cbedc58bb714274a6bbfa651454ef58062d03fafb75
|
3 |
+
size 146367
|
LunarLander_PPO_agent_v4/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
LunarLander_PPO_agent_v4/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1796bcb3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1796bcb440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1796bcb4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1796bcb560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1796bcb5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1796bcb680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1796bcb710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1796bcb7a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1796bcb830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1796bcb8c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1796bcb950>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1796c10c90>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 1501184,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1660070155.801875,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJq8t73zKIE/yMWKvutDGb+A8Tu+rhCKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0007893333333333086,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIb7n6sYleckCUhpRSlIwBbJRL84wBdJRHQMZbCA6EJ0J1fZQoaAZoCWgPQwhr8L4qV6pxQJSGlFKUaBVLwGgWR0DGWyiP8yeqdX2UKGgGaAloD0MIXYlA9c8Lc0CUhpRSlGgVS/VoFkdAxltUDYAbQ3V9lChoBmgJaA9DCPD8ogQ9aHFAlIaUUpRoFUvLaBZHQMZbd2St/4J1fZQoaAZoCWgPQwir6uV3mstvQJSGlFKUaBVL2WgWR0DGW5ynpB5YdX2UKGgGaAloD0MIOIYA4Njbc0CUhpRSlGgVS/RoFkdAxlxfLFn7HnV9lChoBmgJaA9DCGlU4GQbtm9AlIaUUpRoFUvRaBZHQMZcgmMwUQF1fZQoaAZoCWgPQwgIHAk02CtQQJSGlFKUaBVLf2gWR0DGXJcSVW0adX2UKGgGaAloD0MIQC/cuXBtcUCUhpRSlGgVS/JoFkdAxlzCOPvKEHV9lChoBmgJaA9DCKio+pXOmUxAlIaUUpRoFUuHaBZHQMZc17oB7u51fZQoaAZoCWgPQwg1uK0t/NtxQJSGlFKUaBVL82gWR0DGXQIXyiEhdX2UKGgGaAloD0MIr7Mh/0w1c0CUhpRSlGgVS9toFkdAxl0oaFVT73V9lChoBmgJaA9DCMhAnl1+7XNAlIaUUpRoFUvKaBZHQMZdSh6rvLJ1fZQoaAZoCWgPQwgGf7+YLYNGQJSGlFKUaBVLhmgWR0DGXWCp1ie/dX2UKGgGaAloD0MI34sv2qNLcUCUhpRSlGgVS8xoFkdAxl2Duqm0mnV9lChoBmgJaA9DCOKReHm6DmpAlIaUUpRoFU2VAWgWR0DGXnNtbcGkdX2UKGgGaAloD0MIRG6GG7BXckCUhpRSlGgVS/ZoFkdAxl6eBvrGBHV9lChoBmgJaA9DCAOUhhrF7HBAlIaUUpRoFUvQaBZHQMZewN1hb4d1fZQoaAZoCWgPQwgSa/EpAGRyQJSGlFKUaBVL4GgWR0DGXuZtSAH3dX2UKGgGaAloD0MIF58CYDwEc0CUhpRSlGgVS85oFkdAxl8KGJN0vHV9lChoBmgJaA9DCEPlX8sr1U5AlIaUUpRoFUt/aBZHQMZfH9THbRF1fZQoaAZoCWgPQwi05zI1iWBxQJSGlFKUaBVLtmgWR0DGXz76SDAadX2UKGgGaAloD0MISGx3D9AhckCUhpRSlGgVS79oFkdAxl9e1twaSHV9lChoBmgJaA9DCAhW1csv/HFAlIaUUpRoFUvdaBZHQMZfhOSOinJ1fZQoaAZoCWgPQwhdUUoI1mdyQJSGlFKUaBVL1mgWR0DGYEMY8+zMdX2UKGgGaAloD0MIcQLTaZ3GcUCUhpRSlGgVS/BoFkdAxmBsYJmdy3V9lChoBmgJaA9DCFQ57Sk5+3BAlIaUUpRoFUvcaBZHQMZgkwJ5VwR1fZQoaAZoCWgPQwiRSNv4k7xvQJSGlFKUaBVLyWgWR0DGYLPGOuJUdX2UKGgGaAloD0MIM1TFVHqFcECUhpRSlGgVS8ZoFkdAxmDUKw6hg3V9lChoBmgJaA9DCOyH2GBh12lAlIaUUpRoFU3yAWgWR0DGYUmfXf65dX2UKGgGaAloD0MI1GNbBlw0cECUhpRSlGgVS8JoFkdAxmFpypaRp3V9lChoBmgJaA9DCBTNA1ik+3BAlIaUUpRoFUvhaBZHQMZhkbYChex1fZQoaAZoCWgPQwgpQup2NhNxQJSGlFKUaBVNAAFoFkdAxmJaQFs54nV9lChoBmgJaA9DCIe/JmuUYHBAlIaUUpRoFUu5aBZHQMZieR1PnCB1fZQoaAZoCWgPQwh+c3/1+M9yQJSGlFKUaBVLvWgWR0DGYpmdI5HVdX2UKGgGaAloD0MI8wTCTrFBckCUhpRSlGgVS+poFkdAxmLBdZ7ojnV9lChoBmgJaA9DCP8fJ0wYXHBAlIaUUpRoFUvfaBZHQMZi5tUwSJ11fZQoaAZoCWgPQwg1XrpJjCZyQJSGlFKUaBVL2mgWR0DGYw6ujh1ldX2UKGgGaAloD0MIn7DEAwrAcUCUhpRSlGgVS8doFkdAxmMxZqVQh3V9lChoBmgJaA9DCLU0t0LYcHBAlIaUUpRoFUvaaBZHQMZjVx3/xUh1fZQoaAZoCWgPQwj/dW7azJJwQJSGlFKUaBVL12gWR0DGY3xSP2f1dX2UKGgGaAloD0MI1LfM6TL0b0CUhpRSlGgVS8ZoFkdAxmOeQRwqAnV9lChoBmgJaA9DCJF7urqjgXBAlIaUUpRoFUvBaBZHQMZkVYVqN6x1fZQoaAZoCWgPQwi9cyhDFa9xQJSGlFKUaBVL7WgWR0DGZH1LJ0W/dX2UKGgGaAloD0MIt+9Rfz0lckCUhpRSlGgVS7BoFkdAxmScoQWepXV9lChoBmgJaA9DCB9pcFtbkG5AlIaUUpRoFUvoaBZHQMZkxEwWWQh1fZQoaAZoCWgPQwirzJTWnzRzQJSGlFKUaBVLz2gWR0DGZOa0QbuMdX2UKGgGaAloD0MIBqBRurT+cUCUhpRSlGgVS9JoFkdAxmUKAvtdA3V9lChoBmgJaA9DCA5JLZQMLHNAlIaUUpRoFUu5aBZHQMZlKpiZv1l1fZQoaAZoCWgPQwi+ofDZOuxBQJSGlFKUaBVLc2gWR0DGZT71yvLYdX2UKGgGaAloD0MIyT7IsiCNckCUhpRSlGgVS+RoFkdAxmVl9ZzPr3V9lChoBmgJaA9DCIyGjEcptG9AlIaUUpRoFUu1aBZHQMZlg8CHRCx1fZQoaAZoCWgPQwi4IFuWb7lxQJSGlFKUaBVLvmgWR0DGZaRWxQizdX2UKGgGaAloD0MI38SQnIy+c0CUhpRSlGgVS8VoFkdAxmZg+otL+XV9lChoBmgJaA9DCAjKbfveAHFAlIaUUpRoFUvFaBZHQMZmgj1f3N91fZQoaAZoCWgPQwgqkUQvI6ZyQJSGlFKUaBVLvGgWR0DGZqHYUWVNdX2UKGgGaAloD0MIPlqcMUyGckCUhpRSlGgVS95oFkdAxmbGow22onV9lChoBmgJaA9DCGdiuhBrknNAlIaUUpRoFUu6aBZHQMZm5YvnKW91fZQoaAZoCWgPQwjCFVCo59FxQJSGlFKUaBVLyGgWR0DGZwakuYhMdX2UKGgGaAloD0MIgCiYMQXtb0CUhpRSlGgVS9NoFkdAxmcrB+F10XV9lChoBmgJaA9DCA3GiEShf3BAlIaUUpRoFUvSaBZHQMZnTgLiMpB1fZQoaAZoCWgPQwgG8uzyLWRwQJSGlFKUaBVLzGgWR0DGZ2/xe9i+dX2UKGgGaAloD0MIC7Q7pFjdcUCUhpRSlGgVS+loFkdAxmeW5uIhyXV9lChoBmgJaA9DCGyYofHEoXBAlIaUUpRoFUvYaBZHQMZoV3ta6jF1fZQoaAZoCWgPQwhZw0Xu6epvQJSGlFKUaBVL3mgWR0DGaH2QXAM2dX2UKGgGaAloD0MIXHfzVIf6bECUhpRSlGgVTRcDaBZHQMZpPYZ/CqJ1fZQoaAZoCWgPQwiBd/LpsaVyQJSGlFKUaBVLx2gWR0DGaV5HEuQIdX2UKGgGaAloD0MIBJKwb2cockCUhpRSlGgVS9poFkdAxmmDsC1Z1XV9lChoBmgJaA9DCMkFZ/D3MHBAlIaUUpRoFUvQaBZHQMZpp/WMCLd1fZQoaAZoCWgPQwh0C12JwEZxQJSGlFKUaBVL4WgWR0DGac5NEgGKdX2UKGgGaAloD0MIorYNoyAPckCUhpRSlGgVS9JoFkdAxmqKwQlKLHV9lChoBmgJaA9DCOgyNQkeY3BAlIaUUpRoFUvMaBZHQMZqrxxtHhF1fZQoaAZoCWgPQwgGK0611iZzQJSGlFKUaBVLy2gWR0DGatKBK+SKdX2UKGgGaAloD0MIr5l8s41RckCUhpRSlGgVS/ZoFkdAxmr/ES/TLHV9lChoBmgJaA9DCNb8+EuLnkRAlIaUUpRoFUuAaBZHQMZrFFQl8gJ1fZQoaAZoCWgPQwgLmSuDqkRyQJSGlFKUaBVLumgWR0DGazSXIEKWdX2UKGgGaAloD0MIqkiFsQUJc0CUhpRSlGgVS/VoFkdAxmte77sOXnV9lChoBmgJaA9DCPtA8s4h83FAlIaUUpRoFUvgaBZHQMZrhOnEVFh1fZQoaAZoCWgPQwiE8GjjSKVzQJSGlFKUaBVL0mgWR0DGa6pBJI1+dX2UKGgGaAloD0MIqmbWUkBcT0CUhpRSlGgVS3loFkdAxmu/oVVPvnV9lChoBmgJaA9DCPWfNT8+F3NAlIaUUpRoFUv0aBZHQMZsg7BoEjh1fZQoaAZoCWgPQwjCFOXSOGNxQJSGlFKUaBVL7mgWR0DGbKyYoiLVdX2UKGgGaAloD0MIf4P26mPUcUCUhpRSlGgVS9NoFkdAxmzPsk6cRXV9lChoBmgJaA9DCNLgtrZwf3JAlIaUUpRoFUuvaBZHQMZs7DASFoN1fZQoaAZoCWgPQwjGNNO9TvhuQJSGlFKUaBVL5mgWR0DGbRN/vv0AdX2UKGgGaAloD0MI0XZM3ZU1WkCUhpRSlGgVS5ZoFkdAxm0sqtHQQnV9lChoBmgJaA9DCB/Y8V8gYXFAlIaUUpRoFUuxaBZHQMZtS92gWad1fZQoaAZoCWgPQwgjTifZqulzQJSGlFKUaBVL4mgWR0DGbXS6jFhodX2UKGgGaAloD0MIvTrHgKwrcUCUhpRSlGgVS8doFkdAxm2WFL39JnV9lChoBmgJaA9DCHmu78MB/nBAlIaUUpRoFUvnaBZHQMZtvnhKlHl1fZQoaAZoCWgPQwgtsp3vZwtyQJSGlFKUaBVLv2gWR0DGbnl0NjLCdX2UKGgGaAloD0MIOwDirl5lc0CUhpRSlGgVS8VoFkdAxm6a6JZW73V9lChoBmgJaA9DCFpG6j1VAHBAlIaUUpRoFUvdaBZHQMZuwWdd3St1fZQoaAZoCWgPQwhKQiJtow1yQJSGlFKUaBVLuWgWR0DGbufWnTAndX2UKGgGaAloD0MIF7mnqzu4ckCUhpRSlGgVS+JoFkdAxm8a1DSgG3V9lChoBmgJaA9DCCqnPSXnKHRAlIaUUpRoFUvZaBZHQMZvTJKJ2uB1fZQoaAZoCWgPQwihE0IHXWlxQJSGlFKUaBVLw2gWR0DGb3dwR5C4dX2UKGgGaAloD0MI/MVsySpfcUCUhpRSlGgVS9hoFkdAxm+oEytV73V9lChoBmgJaA9DCCI5mbgVBnJAlIaUUpRoFUvYaBZHQMZv01CHARF1fZQoaAZoCWgPQwihZ7Pq805yQJSGlFKUaBVLwWgWR0DGb/RT2nKodWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 17984,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander_PPO_agent_v4/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76ebb92d8236d697b410629817221efdfd0ceffaa21eaebf5e7a52009b262ffd
|
3 |
+
size 87865
|
LunarLander_PPO_agent_v4/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c98ab2183386a51bdd2f40a650e251add72ee29a37cd1d1f36dd9a55e4ab3f47
|
3 |
+
size 43201
|
LunarLander_PPO_agent_v4/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander_PPO_agent_v4/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 278.88 +/- 18.50
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1796bcb3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1796bcb440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1796bcb4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1796bcb560>", "_build": "<function ActorCriticPolicy._build at 0x7f1796bcb5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1796bcb680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1796bcb710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1796bcb7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1796bcb830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1796bcb8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1796bcb950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1796c10c90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1501184, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660070155.801875, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJq8t73zKIE/yMWKvutDGb+A8Tu+rhCKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0007893333333333086, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIb7n6sYleckCUhpRSlIwBbJRL84wBdJRHQMZbCA6EJ0J1fZQoaAZoCWgPQwhr8L4qV6pxQJSGlFKUaBVLwGgWR0DGWyiP8yeqdX2UKGgGaAloD0MIXYlA9c8Lc0CUhpRSlGgVS/VoFkdAxltUDYAbQ3V9lChoBmgJaA9DCPD8ogQ9aHFAlIaUUpRoFUvLaBZHQMZbd2St/4J1fZQoaAZoCWgPQwir6uV3mstvQJSGlFKUaBVL2WgWR0DGW5ynpB5YdX2UKGgGaAloD0MIOIYA4Njbc0CUhpRSlGgVS/RoFkdAxlxfLFn7HnV9lChoBmgJaA9DCGlU4GQbtm9AlIaUUpRoFUvRaBZHQMZcgmMwUQF1fZQoaAZoCWgPQwgIHAk02CtQQJSGlFKUaBVLf2gWR0DGXJcSVW0adX2UKGgGaAloD0MIQC/cuXBtcUCUhpRSlGgVS/JoFkdAxlzCOPvKEHV9lChoBmgJaA9DCKio+pXOmUxAlIaUUpRoFUuHaBZHQMZc17oB7u51fZQoaAZoCWgPQwg1uK0t/NtxQJSGlFKUaBVL82gWR0DGXQIXyiEhdX2UKGgGaAloD0MIr7Mh/0w1c0CUhpRSlGgVS9toFkdAxl0oaFVT73V9lChoBmgJaA9DCMhAnl1+7XNAlIaUUpRoFUvKaBZHQMZdSh6rvLJ1fZQoaAZoCWgPQwgGf7+YLYNGQJSGlFKUaBVLhmgWR0DGXWCp1ie/dX2UKGgGaAloD0MI34sv2qNLcUCUhpRSlGgVS8xoFkdAxl2Duqm0mnV9lChoBmgJaA9DCOKReHm6DmpAlIaUUpRoFU2VAWgWR0DGXnNtbcGkdX2UKGgGaAloD0MIRG6GG7BXckCUhpRSlGgVS/ZoFkdAxl6eBvrGBHV9lChoBmgJaA9DCAOUhhrF7HBAlIaUUpRoFUvQaBZHQMZewN1hb4d1fZQoaAZoCWgPQwgSa/EpAGRyQJSGlFKUaBVL4GgWR0DGXuZtSAH3dX2UKGgGaAloD0MIF58CYDwEc0CUhpRSlGgVS85oFkdAxl8KGJN0vHV9lChoBmgJaA9DCEPlX8sr1U5AlIaUUpRoFUt/aBZHQMZfH9THbRF1fZQoaAZoCWgPQwi05zI1iWBxQJSGlFKUaBVLtmgWR0DGXz76SDAadX2UKGgGaAloD0MISGx3D9AhckCUhpRSlGgVS79oFkdAxl9e1twaSHV9lChoBmgJaA9DCAhW1csv/HFAlIaUUpRoFUvdaBZHQMZfhOSOinJ1fZQoaAZoCWgPQwhdUUoI1mdyQJSGlFKUaBVL1mgWR0DGYEMY8+zMdX2UKGgGaAloD0MIcQLTaZ3GcUCUhpRSlGgVS/BoFkdAxmBsYJmdy3V9lChoBmgJaA9DCFQ57Sk5+3BAlIaUUpRoFUvcaBZHQMZgkwJ5VwR1fZQoaAZoCWgPQwiRSNv4k7xvQJSGlFKUaBVLyWgWR0DGYLPGOuJUdX2UKGgGaAloD0MIM1TFVHqFcECUhpRSlGgVS8ZoFkdAxmDUKw6hg3V9lChoBmgJaA9DCOyH2GBh12lAlIaUUpRoFU3yAWgWR0DGYUmfXf65dX2UKGgGaAloD0MI1GNbBlw0cECUhpRSlGgVS8JoFkdAxmFpypaRp3V9lChoBmgJaA9DCBTNA1ik+3BAlIaUUpRoFUvhaBZHQMZhkbYChex1fZQoaAZoCWgPQwgpQup2NhNxQJSGlFKUaBVNAAFoFkdAxmJaQFs54nV9lChoBmgJaA9DCIe/JmuUYHBAlIaUUpRoFUu5aBZHQMZieR1PnCB1fZQoaAZoCWgPQwh+c3/1+M9yQJSGlFKUaBVLvWgWR0DGYpmdI5HVdX2UKGgGaAloD0MI8wTCTrFBckCUhpRSlGgVS+poFkdAxmLBdZ7ojnV9lChoBmgJaA9DCP8fJ0wYXHBAlIaUUpRoFUvfaBZHQMZi5tUwSJ11fZQoaAZoCWgPQwg1XrpJjCZyQJSGlFKUaBVL2mgWR0DGYw6ujh1ldX2UKGgGaAloD0MIn7DEAwrAcUCUhpRSlGgVS8doFkdAxmMxZqVQh3V9lChoBmgJaA9DCLU0t0LYcHBAlIaUUpRoFUvaaBZHQMZjVx3/xUh1fZQoaAZoCWgPQwj/dW7azJJwQJSGlFKUaBVL12gWR0DGY3xSP2f1dX2UKGgGaAloD0MI1LfM6TL0b0CUhpRSlGgVS8ZoFkdAxmOeQRwqAnV9lChoBmgJaA9DCJF7urqjgXBAlIaUUpRoFUvBaBZHQMZkVYVqN6x1fZQoaAZoCWgPQwi9cyhDFa9xQJSGlFKUaBVL7WgWR0DGZH1LJ0W/dX2UKGgGaAloD0MIt+9Rfz0lckCUhpRSlGgVS7BoFkdAxmScoQWepXV9lChoBmgJaA9DCB9pcFtbkG5AlIaUUpRoFUvoaBZHQMZkxEwWWQh1fZQoaAZoCWgPQwirzJTWnzRzQJSGlFKUaBVLz2gWR0DGZOa0QbuMdX2UKGgGaAloD0MIBqBRurT+cUCUhpRSlGgVS9JoFkdAxmUKAvtdA3V9lChoBmgJaA9DCA5JLZQMLHNAlIaUUpRoFUu5aBZHQMZlKpiZv1l1fZQoaAZoCWgPQwi+ofDZOuxBQJSGlFKUaBVLc2gWR0DGZT71yvLYdX2UKGgGaAloD0MIyT7IsiCNckCUhpRSlGgVS+RoFkdAxmVl9ZzPr3V9lChoBmgJaA9DCIyGjEcptG9AlIaUUpRoFUu1aBZHQMZlg8CHRCx1fZQoaAZoCWgPQwi4IFuWb7lxQJSGlFKUaBVLvmgWR0DGZaRWxQizdX2UKGgGaAloD0MI38SQnIy+c0CUhpRSlGgVS8VoFkdAxmZg+otL+XV9lChoBmgJaA9DCAjKbfveAHFAlIaUUpRoFUvFaBZHQMZmgj1f3N91fZQoaAZoCWgPQwgqkUQvI6ZyQJSGlFKUaBVLvGgWR0DGZqHYUWVNdX2UKGgGaAloD0MIPlqcMUyGckCUhpRSlGgVS95oFkdAxmbGow22onV9lChoBmgJaA9DCGdiuhBrknNAlIaUUpRoFUu6aBZHQMZm5YvnKW91fZQoaAZoCWgPQwjCFVCo59FxQJSGlFKUaBVLyGgWR0DGZwakuYhMdX2UKGgGaAloD0MIgCiYMQXtb0CUhpRSlGgVS9NoFkdAxmcrB+F10XV9lChoBmgJaA9DCA3GiEShf3BAlIaUUpRoFUvSaBZHQMZnTgLiMpB1fZQoaAZoCWgPQwgG8uzyLWRwQJSGlFKUaBVLzGgWR0DGZ2/xe9i+dX2UKGgGaAloD0MIC7Q7pFjdcUCUhpRSlGgVS+loFkdAxmeW5uIhyXV9lChoBmgJaA9DCGyYofHEoXBAlIaUUpRoFUvYaBZHQMZoV3ta6jF1fZQoaAZoCWgPQwhZw0Xu6epvQJSGlFKUaBVL3mgWR0DGaH2QXAM2dX2UKGgGaAloD0MIXHfzVIf6bECUhpRSlGgVTRcDaBZHQMZpPYZ/CqJ1fZQoaAZoCWgPQwiBd/LpsaVyQJSGlFKUaBVLx2gWR0DGaV5HEuQIdX2UKGgGaAloD0MIBJKwb2cockCUhpRSlGgVS9poFkdAxmmDsC1Z1XV9lChoBmgJaA9DCMkFZ/D3MHBAlIaUUpRoFUvQaBZHQMZpp/WMCLd1fZQoaAZoCWgPQwh0C12JwEZxQJSGlFKUaBVL4WgWR0DGac5NEgGKdX2UKGgGaAloD0MIorYNoyAPckCUhpRSlGgVS9JoFkdAxmqKwQlKLHV9lChoBmgJaA9DCOgyNQkeY3BAlIaUUpRoFUvMaBZHQMZqrxxtHhF1fZQoaAZoCWgPQwgGK0611iZzQJSGlFKUaBVLy2gWR0DGatKBK+SKdX2UKGgGaAloD0MIr5l8s41RckCUhpRSlGgVS/ZoFkdAxmr/ES/TLHV9lChoBmgJaA9DCNb8+EuLnkRAlIaUUpRoFUuAaBZHQMZrFFQl8gJ1fZQoaAZoCWgPQwgLmSuDqkRyQJSGlFKUaBVLumgWR0DGazSXIEKWdX2UKGgGaAloD0MIqkiFsQUJc0CUhpRSlGgVS/VoFkdAxmte77sOXnV9lChoBmgJaA9DCPtA8s4h83FAlIaUUpRoFUvgaBZHQMZrhOnEVFh1fZQoaAZoCWgPQwiE8GjjSKVzQJSGlFKUaBVL0mgWR0DGa6pBJI1+dX2UKGgGaAloD0MIqmbWUkBcT0CUhpRSlGgVS3loFkdAxmu/oVVPvnV9lChoBmgJaA9DCPWfNT8+F3NAlIaUUpRoFUv0aBZHQMZsg7BoEjh1fZQoaAZoCWgPQwjCFOXSOGNxQJSGlFKUaBVL7mgWR0DGbKyYoiLVdX2UKGgGaAloD0MIf4P26mPUcUCUhpRSlGgVS9NoFkdAxmzPsk6cRXV9lChoBmgJaA9DCNLgtrZwf3JAlIaUUpRoFUuvaBZHQMZs7DASFoN1fZQoaAZoCWgPQwjGNNO9TvhuQJSGlFKUaBVL5mgWR0DGbRN/vv0AdX2UKGgGaAloD0MI0XZM3ZU1WkCUhpRSlGgVS5ZoFkdAxm0sqtHQQnV9lChoBmgJaA9DCB/Y8V8gYXFAlIaUUpRoFUuxaBZHQMZtS92gWad1fZQoaAZoCWgPQwgjTifZqulzQJSGlFKUaBVL4mgWR0DGbXS6jFhodX2UKGgGaAloD0MIvTrHgKwrcUCUhpRSlGgVS8doFkdAxm2WFL39JnV9lChoBmgJaA9DCHmu78MB/nBAlIaUUpRoFUvnaBZHQMZtvnhKlHl1fZQoaAZoCWgPQwgtsp3vZwtyQJSGlFKUaBVLv2gWR0DGbnl0NjLCdX2UKGgGaAloD0MIOwDirl5lc0CUhpRSlGgVS8VoFkdAxm6a6JZW73V9lChoBmgJaA9DCFpG6j1VAHBAlIaUUpRoFUvdaBZHQMZuwWdd3St1fZQoaAZoCWgPQwhKQiJtow1yQJSGlFKUaBVLuWgWR0DGbufWnTAndX2UKGgGaAloD0MIF7mnqzu4ckCUhpRSlGgVS+JoFkdAxm8a1DSgG3V9lChoBmgJaA9DCCqnPSXnKHRAlIaUUpRoFUvZaBZHQMZvTJKJ2uB1fZQoaAZoCWgPQwihE0IHXWlxQJSGlFKUaBVLw2gWR0DGb3dwR5C4dX2UKGgGaAloD0MI/MVsySpfcUCUhpRSlGgVS9hoFkdAxm+oEytV73V9lChoBmgJaA9DCCI5mbgVBnJAlIaUUpRoFUvYaBZHQMZv01CHARF1fZQoaAZoCWgPQwihZ7Pq805yQJSGlFKUaBVLwWgWR0DGb/RT2nKodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 17984, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (203 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 278.8783536702575, "std_reward": 18.49549784036635, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-09T19:30:28.219207"}
|