PPO LunarLander-v2 trained agent
Browse files- LunarLander_PPO_agent_v1.zip +3 -0
- LunarLander_PPO_agent_v1/_stable_baselines3_version +1 -0
- LunarLander_PPO_agent_v1/data +94 -0
- LunarLander_PPO_agent_v1/policy.optimizer.pth +3 -0
- LunarLander_PPO_agent_v1/policy.pth +3 -0
- LunarLander_PPO_agent_v1/pytorch_variables.pth +3 -0
- LunarLander_PPO_agent_v1/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LunarLander_PPO_agent_v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80da0c204c74fb7c56b0e1d7942b79529ea7eec71e25c69d267cb3502bd906e6
|
3 |
+
size 146443
|
LunarLander_PPO_agent_v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
LunarLander_PPO_agent_v1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1796bcb3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1796bcb440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1796bcb4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1796bcb560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1796bcb5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1796bcb680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1796bcb710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1796bcb7a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1796bcb830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1796bcb8c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1796bcb950>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1796c10c90>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 1001472,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1660061752.4365375,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAA2Tyb1xJmg/svOvvUTD4b72Nvu9ivqPPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVWRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI14UfnM8ccUCUhpRSlIwBbJRNAwGMAXSUR0Cg+yreIl+mdX2UKGgGaAloD0MIoib6fFRucECUhpRSlGgVS/1oFkdAoP5TgCOmznV9lChoBmgJaA9DCMRBQpSvWnBAlIaUUpRoFU0FAWgWR0Cg/xPXbuc+dX2UKGgGaAloD0MIngd3Z22eckCUhpRSlGgVS/doFkdAoP+832mHg3V9lChoBmgJaA9DCDOoNjjRdnJAlIaUUpRoFU0JAWgWR0ChAHolt0mudX2UKGgGaAloD0MI5h4SvjdKckCUhpRSlGgVTU4BaBZHQKEBdPzFuNx1fZQoaAZoCWgPQwjsNNJSOaJxQJSGlFKUaBVL8GgWR0ChAh7aqS5idX2UKGgGaAloD0MIOPQWD6+ccECUhpRSlGgVTQIBaBZHQKEC17D2rXF1fZQoaAZoCWgPQwi0OGOYk4dyQJSGlFKUaBVL/GgWR0ChA4rf1pTNdX2UKGgGaAloD0MIdxTnqCMHc0CUhpRSlGgVS/FoFkdAoQaLBKtga3V9lChoBmgJaA9DCGVQbXCiw3FAlIaUUpRoFU0iAWgWR0ChB1i4rjHXdX2UKGgGaAloD0MInnqkwe1XbkCUhpRSlGgVTRoBaBZHQKEIKWUKRdR1fZQoaAZoCWgPQwgNb9bgvc9yQJSGlFKUaBVNDQFoFkdAoQjnN5dGAnV9lChoBmgJaA9DCEMDsWxmvnJAlIaUUpRoFU1VAWgWR0ChCe/rSmZWdX2UKGgGaAloD0MIUWnEzL7kcUCUhpRSlGgVS/doFkdAoQqi53C9AXV9lChoBmgJaA9DCK2FWWgnFnFAlIaUUpRoFU0UAWgWR0ChC3uQQtjDdX2UKGgGaAloD0MIZvZ5jLKucECUhpRSlGgVTQcBaBZHQKEOonaWX1J1fZQoaAZoCWgPQwg2IEJc+dVxQJSGlFKUaBVL9GgWR0ChD1VXNke7dX2UKGgGaAloD0MIl+MViB5EckCUhpRSlGgVS+toFkdAoQ/6HTI/7nV9lChoBmgJaA9DCGJITiauV3BAlIaUUpRoFUvraBZHQKEQoE6kqMF1fZQoaAZoCWgPQwgdsKvJk0ZzQJSGlFKUaBVNJwFoFkdAoRFxRCQcP3V9lChoBmgJaA9DCKOVe4FZ13JAlIaUUpRoFU0fAWgWR0ChEj9Whh6TdX2UKGgGaAloD0MIvady2hN/cUCUhpRSlGgVTQ0BaBZHQKES/jMFEAp1fZQoaAZoCWgPQwhselBQiilxQJSGlFKUaBVNJQFoFkdAoRPaubI91XV9lChoBmgJaA9DCM5uLZOh/nBAlIaUUpRoFU0rAWgWR0ChFwk8ifQKdX2UKGgGaAloD0MICrlSz8KGckCUhpRSlGgVTQEBaBZHQKEXxD50r9V1fZQoaAZoCWgPQwiCVfXyuxJwQJSGlFKUaBVL/GgWR0ChGIOBtk4FdX2UKGgGaAloD0MIL6LtmDq8bkCUhpRSlGgVTTcBaBZHQKEZa0uUUwl1fZQoaAZoCWgPQwhnZJC7yBlwQJSGlFKUaBVNDAFoFkdAoRorM1TBInV9lChoBmgJaA9DCHVyhuLOq3FAlIaUUpRoFU0vAWgWR0ChGwLF4s3AdX2UKGgGaAloD0MIOBJosKlUb0CUhpRSlGgVTRMBaBZHQKEbybFS88N1fZQoaAZoCWgPQwhxAWiULidOQJSGlFKUaBVL3GgWR0ChHsHhjvuxdX2UKGgGaAloD0MI4GWGjTJgcECUhpRSlGgVTT8BaBZHQKEfwemvW6N1fZQoaAZoCWgPQwhDWI0lbIRyQJSGlFKUaBVNFwFoFkdAoSCS6MBIWnV9lChoBmgJaA9DCElIpG18OG9AlIaUUpRoFU0zAWgWR0ChIXmFBY3edX2UKGgGaAloD0MIXXAGf7+wcUCUhpRSlGgVS/JoFkdAoSIn7rLQonV9lChoBmgJaA9DCGzu6H85dXJAlIaUUpRoFU0IAWgWR0ChIuZuqFRHdX2UKGgGaAloD0MID5vIzMUeckCUhpRSlGgVTVABaBZHQKEj1hzeXRh1fZQoaAZoCWgPQwiRKR+CqkRwQJSGlFKUaBVNEAFoFkdAoSb18kUsWnV9lChoBmgJaA9DCHriOVvAE3JAlIaUUpRoFU1NAWgWR0ChJ/PaURnOdX2UKGgGaAloD0MIY9UgzC0jcUCUhpRSlGgVS/poFkdAoSitOdoWYXV9lChoBmgJaA9DCITWw5dJaXBAlIaUUpRoFUvvaBZHQKEpVwHZ9NN1fZQoaAZoCWgPQwg+y/PgrhFxQJSGlFKUaBVNBgFoFkdAoSoaCcwxnHV9lChoBmgJaA9DCHqOyHepoXFAlIaUUpRoFU1EAWgWR0ChKxJyIYWMdX2UKGgGaAloD0MI4GjHDX9Ac0CUhpRSlGgVTQUBaBZHQKEr27eVLSN1fZQoaAZoCWgPQwhuGXCWkmpxQJSGlFKUaBVNGgFoFkdAoSykj9n9N3V9lChoBmgJaA9DCOpCrP4IvnFAlIaUUpRoFUvvaBZHQKEvr6vaDf51fZQoaAZoCWgPQwhHrptSXqZwQJSGlFKUaBVL7WgWR0ChMGFV1fVqdX2UKGgGaAloD0MIMxe4PFZfcECUhpRSlGgVS/VoFkdAoTEWnuRcNnV9lChoBmgJaA9DCMWRByILkXBAlIaUUpRoFU00AWgWR0ChMfs1baAXdX2UKGgGaAloD0MIhXgkXl7DckCUhpRSlGgVTTABaBZHQKEy1N0vGqB1fZQoaAZoCWgPQwj+fjFb8nxxQJSGlFKUaBVL+GgWR0ChM4UDMeOodX2UKGgGaAloD0MIteBFX8FQcUCUhpRSlGgVS/BoFkdAoTQ0+xGDtnV9lChoBmgJaA9DCIwS9Be6M3NAlIaUUpRoFU0hAWgWR0ChN1bNbC79dX2UKGgGaAloD0MI6USCqWZscUCUhpRSlGgVTREBaBZHQKE4F4bCJoF1fZQoaAZoCWgPQwikHMwmwN1xQJSGlFKUaBVL92gWR0ChOM/CZWq+dX2UKGgGaAloD0MIzas6qwVkb0CUhpRSlGgVS/FoFkdAoTl3b48EFHV9lChoBmgJaA9DCBk6dlAJkG5AlIaUUpRoFU0JAWgWR0ChOjj+R5kcdX2UKGgGaAloD0MIb4Jvmj5zckCUhpRSlGgVTRwBaBZHQKE7DEnb7CV1fZQoaAZoCWgPQwi0AG2rWRRyQJSGlFKUaBVL9GgWR0ChO7hA4XGfdX2UKGgGaAloD0MIjbeVXhuVbUCUhpRSlGgVS/hoFkdAoTxqMJhOQHV9lChoBmgJaA9DCKMiTifZRW9AlIaUUpRoFUv+aBZHQKE/fSFXaJ11fZQoaAZoCWgPQwhQbtv3aBpxQJSGlFKUaBVL6GgWR0ChQCOO0b97dX2UKGgGaAloD0MIZOsZwjG6bkCUhpRSlGgVTRkBaBZHQKFA+KaXrt51fZQoaAZoCWgPQwj8qIb9XjpxQJSGlFKUaBVNCwFoFkdAoUG+M+/xlXV9lChoBmgJaA9DCBzuI7dmk3BAlIaUUpRoFU0JAWgWR0ChQo3lS0jUdX2UKGgGaAloD0MIZHjsZ7E8b0CUhpRSlGgVTQsBaBZHQKFDWdPtUn51fZQoaAZoCWgPQwgHfentz6xyQJSGlFKUaBVNAwFoFkdAoUQZZOi35XV9lChoBmgJaA9DCPymsFKB+3JAlIaUUpRoFU0CAWgWR0ChRNIaLn9vdX2UKGgGaAloD0MIvhHdsy7GcECUhpRSlGgVS/9oFkdAoUftrsSkCXV9lChoBmgJaA9DCIOG/gkuvnFAlIaUUpRoFUvtaBZHQKFInXo1UER1fZQoaAZoCWgPQwgOFeP8DfRyQJSGlFKUaBVL9WgWR0ChSVH1OCXhdX2UKGgGaAloD0MIZOdtbPZicECUhpRSlGgVTTUBaBZHQKFKPMr3Cbd1fZQoaAZoCWgPQwg4EmiwKa1yQJSGlFKUaBVNHAFoFkdAoUsGa4MF2XV9lChoBmgJaA9DCEUsYtgh8HBAlIaUUpRoFUvuaBZHQKFLsxptaZB1fZQoaAZoCWgPQwhqoPmcu3RuQJSGlFKUaBVL8GgWR0ChTF92gWaddX2UKGgGaAloD0MIJnMs76oDckCUhpRSlGgVTTQBaBZHQKFNMzYVZcN1fZQoaAZoCWgPQwiTjJyFPc5vQJSGlFKUaBVL+WgWR0ChUFNwR5C4dX2UKGgGaAloD0MITb9EvPUucECUhpRSlGgVTQYBaBZHQKFRE4//vOR1fZQoaAZoCWgPQwjbozfcR/txQJSGlFKUaBVNUQFoFkdAoVILR2KVIXV9lChoBmgJaA9DCACL/PrhTHJAlIaUUpRoFUv3aBZHQKFSv/lQuVZ1fZQoaAZoCWgPQwhrYoGvKMlxQJSGlFKUaBVNIAFoFkdAoVOoNEw353V9lChoBmgJaA9DCI+mejL/9HJAlIaUUpRoFUvwaBZHQKFUU8NhE0B1fZQoaAZoCWgPQwgrL/mffPNyQJSGlFKUaBVL+mgWR0ChVQOcDr7gdX2UKGgGaAloD0MIMBFvnX8qbUCUhpRSlGgVS+xoFkdAoVWsSAYpD3V9lChoBmgJaA9DCKZkOQmlAG1AlIaUUpRoFU0vAWgWR0ChWP3dCVrzdX2UKGgGaAloD0MICyk/qXYRb0CUhpRSlGgVTRcBaBZHQKFZxQ40dil1fZQoaAZoCWgPQwhcHmtGxl5wQJSGlFKUaBVNEgFoFkdAoVqTLB9Cu3V9lChoBmgJaA9DCPJgi90+jXFAlIaUUpRoFU0jAWgWR0ChW2xgy/KydX2UKGgGaAloD0MIcFtbeN4vb0CUhpRSlGgVS/ZoFkdAoVwfTRYzSHV9lChoBmgJaA9DCDQw8rKmd29AlIaUUpRoFU0MAWgWR0ChXOvrfLs9dX2UKGgGaAloD0MI8Z2Y9WJ5cUCUhpRSlGgVTQUBaBZHQKFdqz2OAAh1fZQoaAZoCWgPQwggm+RHvHByQJSGlFKUaBVL+GgWR0ChYLSYoiLVdX2UKGgGaAloD0MIN3Fyv4PJcECUhpRSlGgVTS4BaBZHQKFhicn3L3d1fZQoaAZoCWgPQwioUx7dSMZxQJSGlFKUaBVNHgFoFkdAoWJUPSUkfXV9lChoBmgJaA9DCIKOVrVkWXJAlIaUUpRoFUv6aBZHQKFjCgK4QSV1fZQoaAZoCWgPQwgurBvvDuVxQJSGlFKUaBVNOwFoFkdAoWP6aZx7zHV9lChoBmgJaA9DCMTsZdvpGHFAlIaUUpRoFUvwaBZHQKFksIu5BkZ1fZQoaAZoCWgPQwg83XniebFxQJSGlFKUaBVNJwFoFkdAoWWYCQtBfXV9lChoBmgJaA9DCKPLm8M1DnFAlIaUUpRoFUvtaBZHQKFmRlFMIu51ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 3912,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander_PPO_agent_v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e888ea390189926501c5629bb024f37b73d817e82b0c0d22225879821d10f26e
|
3 |
+
size 87865
|
LunarLander_PPO_agent_v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0741d4a28c6b005c95605a869d22bcf477cb97f9fd775e4386693d6de431af79
|
3 |
+
size 43201
|
LunarLander_PPO_agent_v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander_PPO_agent_v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 257.51 +/- 67.61
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1796bcb3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1796bcb440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1796bcb4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1796bcb560>", "_build": "<function ActorCriticPolicy._build at 0x7f1796bcb5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1796bcb680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1796bcb710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1796bcb7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1796bcb830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1796bcb8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1796bcb950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1796c10c90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660061752.4365375, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAA2Tyb1xJmg/svOvvUTD4b72Nvu9ivqPPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI14UfnM8ccUCUhpRSlIwBbJRNAwGMAXSUR0Cg+yreIl+mdX2UKGgGaAloD0MIoib6fFRucECUhpRSlGgVS/1oFkdAoP5TgCOmznV9lChoBmgJaA9DCMRBQpSvWnBAlIaUUpRoFU0FAWgWR0Cg/xPXbuc+dX2UKGgGaAloD0MIngd3Z22eckCUhpRSlGgVS/doFkdAoP+832mHg3V9lChoBmgJaA9DCDOoNjjRdnJAlIaUUpRoFU0JAWgWR0ChAHolt0mudX2UKGgGaAloD0MI5h4SvjdKckCUhpRSlGgVTU4BaBZHQKEBdPzFuNx1fZQoaAZoCWgPQwjsNNJSOaJxQJSGlFKUaBVL8GgWR0ChAh7aqS5idX2UKGgGaAloD0MIOPQWD6+ccECUhpRSlGgVTQIBaBZHQKEC17D2rXF1fZQoaAZoCWgPQwi0OGOYk4dyQJSGlFKUaBVL/GgWR0ChA4rf1pTNdX2UKGgGaAloD0MIdxTnqCMHc0CUhpRSlGgVS/FoFkdAoQaLBKtga3V9lChoBmgJaA9DCGVQbXCiw3FAlIaUUpRoFU0iAWgWR0ChB1i4rjHXdX2UKGgGaAloD0MInnqkwe1XbkCUhpRSlGgVTRoBaBZHQKEIKWUKRdR1fZQoaAZoCWgPQwgNb9bgvc9yQJSGlFKUaBVNDQFoFkdAoQjnN5dGAnV9lChoBmgJaA9DCEMDsWxmvnJAlIaUUpRoFU1VAWgWR0ChCe/rSmZWdX2UKGgGaAloD0MIUWnEzL7kcUCUhpRSlGgVS/doFkdAoQqi53C9AXV9lChoBmgJaA9DCK2FWWgnFnFAlIaUUpRoFU0UAWgWR0ChC3uQQtjDdX2UKGgGaAloD0MIZvZ5jLKucECUhpRSlGgVTQcBaBZHQKEOonaWX1J1fZQoaAZoCWgPQwg2IEJc+dVxQJSGlFKUaBVL9GgWR0ChD1VXNke7dX2UKGgGaAloD0MIl+MViB5EckCUhpRSlGgVS+toFkdAoQ/6HTI/7nV9lChoBmgJaA9DCGJITiauV3BAlIaUUpRoFUvraBZHQKEQoE6kqMF1fZQoaAZoCWgPQwgdsKvJk0ZzQJSGlFKUaBVNJwFoFkdAoRFxRCQcP3V9lChoBmgJaA9DCKOVe4FZ13JAlIaUUpRoFU0fAWgWR0ChEj9Whh6TdX2UKGgGaAloD0MIvady2hN/cUCUhpRSlGgVTQ0BaBZHQKES/jMFEAp1fZQoaAZoCWgPQwhselBQiilxQJSGlFKUaBVNJQFoFkdAoRPaubI91XV9lChoBmgJaA9DCM5uLZOh/nBAlIaUUpRoFU0rAWgWR0ChFwk8ifQKdX2UKGgGaAloD0MICrlSz8KGckCUhpRSlGgVTQEBaBZHQKEXxD50r9V1fZQoaAZoCWgPQwiCVfXyuxJwQJSGlFKUaBVL/GgWR0ChGIOBtk4FdX2UKGgGaAloD0MIL6LtmDq8bkCUhpRSlGgVTTcBaBZHQKEZa0uUUwl1fZQoaAZoCWgPQwhnZJC7yBlwQJSGlFKUaBVNDAFoFkdAoRorM1TBInV9lChoBmgJaA9DCHVyhuLOq3FAlIaUUpRoFU0vAWgWR0ChGwLF4s3AdX2UKGgGaAloD0MIOBJosKlUb0CUhpRSlGgVTRMBaBZHQKEbybFS88N1fZQoaAZoCWgPQwhxAWiULidOQJSGlFKUaBVL3GgWR0ChHsHhjvuxdX2UKGgGaAloD0MI4GWGjTJgcECUhpRSlGgVTT8BaBZHQKEfwemvW6N1fZQoaAZoCWgPQwhDWI0lbIRyQJSGlFKUaBVNFwFoFkdAoSCS6MBIWnV9lChoBmgJaA9DCElIpG18OG9AlIaUUpRoFU0zAWgWR0ChIXmFBY3edX2UKGgGaAloD0MIXXAGf7+wcUCUhpRSlGgVS/JoFkdAoSIn7rLQonV9lChoBmgJaA9DCGzu6H85dXJAlIaUUpRoFU0IAWgWR0ChIuZuqFRHdX2UKGgGaAloD0MID5vIzMUeckCUhpRSlGgVTVABaBZHQKEj1hzeXRh1fZQoaAZoCWgPQwiRKR+CqkRwQJSGlFKUaBVNEAFoFkdAoSb18kUsWnV9lChoBmgJaA9DCHriOVvAE3JAlIaUUpRoFU1NAWgWR0ChJ/PaURnOdX2UKGgGaAloD0MIY9UgzC0jcUCUhpRSlGgVS/poFkdAoSitOdoWYXV9lChoBmgJaA9DCITWw5dJaXBAlIaUUpRoFUvvaBZHQKEpVwHZ9NN1fZQoaAZoCWgPQwg+y/PgrhFxQJSGlFKUaBVNBgFoFkdAoSoaCcwxnHV9lChoBmgJaA9DCHqOyHepoXFAlIaUUpRoFU1EAWgWR0ChKxJyIYWMdX2UKGgGaAloD0MI4GjHDX9Ac0CUhpRSlGgVTQUBaBZHQKEr27eVLSN1fZQoaAZoCWgPQwhuGXCWkmpxQJSGlFKUaBVNGgFoFkdAoSykj9n9N3V9lChoBmgJaA9DCOpCrP4IvnFAlIaUUpRoFUvvaBZHQKEvr6vaDf51fZQoaAZoCWgPQwhHrptSXqZwQJSGlFKUaBVL7WgWR0ChMGFV1fVqdX2UKGgGaAloD0MIMxe4PFZfcECUhpRSlGgVS/VoFkdAoTEWnuRcNnV9lChoBmgJaA9DCMWRByILkXBAlIaUUpRoFU00AWgWR0ChMfs1baAXdX2UKGgGaAloD0MIhXgkXl7DckCUhpRSlGgVTTABaBZHQKEy1N0vGqB1fZQoaAZoCWgPQwj+fjFb8nxxQJSGlFKUaBVL+GgWR0ChM4UDMeOodX2UKGgGaAloD0MIteBFX8FQcUCUhpRSlGgVS/BoFkdAoTQ0+xGDtnV9lChoBmgJaA9DCIwS9Be6M3NAlIaUUpRoFU0hAWgWR0ChN1bNbC79dX2UKGgGaAloD0MI6USCqWZscUCUhpRSlGgVTREBaBZHQKE4F4bCJoF1fZQoaAZoCWgPQwikHMwmwN1xQJSGlFKUaBVL92gWR0ChOM/CZWq+dX2UKGgGaAloD0MIzas6qwVkb0CUhpRSlGgVS/FoFkdAoTl3b48EFHV9lChoBmgJaA9DCBk6dlAJkG5AlIaUUpRoFU0JAWgWR0ChOjj+R5kcdX2UKGgGaAloD0MIb4Jvmj5zckCUhpRSlGgVTRwBaBZHQKE7DEnb7CV1fZQoaAZoCWgPQwi0AG2rWRRyQJSGlFKUaBVL9GgWR0ChO7hA4XGfdX2UKGgGaAloD0MIjbeVXhuVbUCUhpRSlGgVS/hoFkdAoTxqMJhOQHV9lChoBmgJaA9DCKMiTifZRW9AlIaUUpRoFUv+aBZHQKE/fSFXaJ11fZQoaAZoCWgPQwhQbtv3aBpxQJSGlFKUaBVL6GgWR0ChQCOO0b97dX2UKGgGaAloD0MIZOsZwjG6bkCUhpRSlGgVTRkBaBZHQKFA+KaXrt51fZQoaAZoCWgPQwj8qIb9XjpxQJSGlFKUaBVNCwFoFkdAoUG+M+/xlXV9lChoBmgJaA9DCBzuI7dmk3BAlIaUUpRoFU0JAWgWR0ChQo3lS0jUdX2UKGgGaAloD0MIZHjsZ7E8b0CUhpRSlGgVTQsBaBZHQKFDWdPtUn51fZQoaAZoCWgPQwgHfentz6xyQJSGlFKUaBVNAwFoFkdAoUQZZOi35XV9lChoBmgJaA9DCPymsFKB+3JAlIaUUpRoFU0CAWgWR0ChRNIaLn9vdX2UKGgGaAloD0MIvhHdsy7GcECUhpRSlGgVS/9oFkdAoUftrsSkCXV9lChoBmgJaA9DCIOG/gkuvnFAlIaUUpRoFUvtaBZHQKFInXo1UER1fZQoaAZoCWgPQwgOFeP8DfRyQJSGlFKUaBVL9WgWR0ChSVH1OCXhdX2UKGgGaAloD0MIZOdtbPZicECUhpRSlGgVTTUBaBZHQKFKPMr3Cbd1fZQoaAZoCWgPQwg4EmiwKa1yQJSGlFKUaBVNHAFoFkdAoUsGa4MF2XV9lChoBmgJaA9DCEUsYtgh8HBAlIaUUpRoFUvuaBZHQKFLsxptaZB1fZQoaAZoCWgPQwhqoPmcu3RuQJSGlFKUaBVL8GgWR0ChTF92gWaddX2UKGgGaAloD0MIJnMs76oDckCUhpRSlGgVTTQBaBZHQKFNMzYVZcN1fZQoaAZoCWgPQwiTjJyFPc5vQJSGlFKUaBVL+WgWR0ChUFNwR5C4dX2UKGgGaAloD0MITb9EvPUucECUhpRSlGgVTQYBaBZHQKFRE4//vOR1fZQoaAZoCWgPQwjbozfcR/txQJSGlFKUaBVNUQFoFkdAoVILR2KVIXV9lChoBmgJaA9DCACL/PrhTHJAlIaUUpRoFUv3aBZHQKFSv/lQuVZ1fZQoaAZoCWgPQwhrYoGvKMlxQJSGlFKUaBVNIAFoFkdAoVOoNEw353V9lChoBmgJaA9DCI+mejL/9HJAlIaUUpRoFUvwaBZHQKFUU8NhE0B1fZQoaAZoCWgPQwgrL/mffPNyQJSGlFKUaBVL+mgWR0ChVQOcDr7gdX2UKGgGaAloD0MIMBFvnX8qbUCUhpRSlGgVS+xoFkdAoVWsSAYpD3V9lChoBmgJaA9DCKZkOQmlAG1AlIaUUpRoFU0vAWgWR0ChWP3dCVrzdX2UKGgGaAloD0MICyk/qXYRb0CUhpRSlGgVTRcBaBZHQKFZxQ40dil1fZQoaAZoCWgPQwhcHmtGxl5wQJSGlFKUaBVNEgFoFkdAoVqTLB9Cu3V9lChoBmgJaA9DCPJgi90+jXFAlIaUUpRoFU0jAWgWR0ChW2xgy/KydX2UKGgGaAloD0MIcFtbeN4vb0CUhpRSlGgVS/ZoFkdAoVwfTRYzSHV9lChoBmgJaA9DCDQw8rKmd29AlIaUUpRoFU0MAWgWR0ChXOvrfLs9dX2UKGgGaAloD0MI8Z2Y9WJ5cUCUhpRSlGgVTQUBaBZHQKFdqz2OAAh1fZQoaAZoCWgPQwggm+RHvHByQJSGlFKUaBVL+GgWR0ChYLSYoiLVdX2UKGgGaAloD0MIN3Fyv4PJcECUhpRSlGgVTS4BaBZHQKFhicn3L3d1fZQoaAZoCWgPQwioUx7dSMZxQJSGlFKUaBVNHgFoFkdAoWJUPSUkfXV9lChoBmgJaA9DCIKOVrVkWXJAlIaUUpRoFUv6aBZHQKFjCgK4QSV1fZQoaAZoCWgPQwgurBvvDuVxQJSGlFKUaBVNOwFoFkdAoWP6aZx7zHV9lChoBmgJaA9DCMTsZdvpGHFAlIaUUpRoFUvwaBZHQKFksIu5BkZ1fZQoaAZoCWgPQwg83XniebFxQJSGlFKUaBVNJwFoFkdAoWWYCQtBfXV9lChoBmgJaA9DCKPLm8M1DnFAlIaUUpRoFUvtaBZHQKFmRlFMIu51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3912, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (210 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.5124094818724, "std_reward": 67.6141914071652, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-09T16:55:25.858843"}
|