File size: 12,535 Bytes
6dae451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e15566
6dae451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa3dc52
 
 
 
afebd8d
 
 
 
 
6dae451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa3dc52
 
 
 
6dae451
 
 
 
 
 
b574915
 
 
 
6dae451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
library_name: transformers
license: other
license_name: lfm1.0
license_link: LICENSE
language:
- en
- ar
- zh
- fr
- de
- ja
- ko
- es
pipeline_tag: text-generation
tags:
- liquid
- lfm2
- edge
---

<center>
<div style="text-align: center;">
  <img 
    src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/7_6D7rWrLxp2hb6OHSV1p.png" 
    alt="Liquid AI"
    style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;"
  />
</div>

<a href="https://playground.liquid.ai/chat">
<svg width="114.8" height="20" viewBox="0 0 1300 200" xmlns="http://www.w3.org/2000/svg" role="img" aria-label="Liquid Playground" style="margin-bottom: 1em;">
  <title>Liquid: Playground</title>
  <g>
    <rect fill="#fff" width="600" height="200"></rect>
    <rect fill="url(#x)" x="600" width="700" height="200"></rect>
  </g>
  <g transform="translate(20, 30) scale(0.4, 0.4)">
    <path d="M172.314 129.313L172.219 129.367L206.125 188.18C210.671 195.154 213.324 203.457 213.324 212.382C213.324 220.834 210.956 228.739 206.839 235.479L275.924 213.178L167.853 33.6L141.827 76.9614L172.314 129.313Z" fill="black"/>
    <path d="M114.217 302.4L168.492 257.003C168.447 257.003 168.397 257.003 168.352 257.003C143.515 257.003 123.385 237.027 123.385 212.387C123.385 203.487 126.023 195.204 130.55 188.24L162.621 132.503L135.966 86.7327L60.0762 213.183L114.127 302.4H114.217Z" fill="black"/>
    <path d="M191.435 250.681C191.435 250.681 191.43 250.681 191.425 250.686L129.71 302.4H221.294L267.71 226.593L191.435 250.686V250.681Z" fill="black"/>
  </g>
  <g aria-hidden="true" fill="#fff" text-anchor="start" font-family="Verdana,DejaVu Sans,sans-serif" font-size="110">
    <text x="200" y="148" textLength="329" fill="#000" opacity="0.1">Liquid</text>
    <text x="190" y="138" textLength="329" fill="#000">Liquid</text>
    <text x="655" y="148" textLength="619" fill="#000" opacity="0.1">Playground</text>
    <text x="645" y="138" textLength="619">Playground</text>
  </g>
  
  <linearGradient id="x" x1="0%" y1="0%" x2="100%" y2="0%">
    <stop offset="0%" style="stop-color:#000000"></stop>
    <stop offset="100%" style="stop-color:#000000"></stop>
  </linearGradient>
</svg>
</a>
</center>

# LFM2-1.2B

LFM2 is a new generation of hybrid models developed by [Liquid AI](https://www.liquid.ai/), specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency. 

We're releasing the weights of three post-trained checkpoints with 350M, 700M, and 1.2B parameters. They provide the following key features to create AI-powered edge applications:

* **Fast training & inference** – LFM2 achieves 3x faster training compared to its previous generation. It also benefits from 2x faster decode and prefill speed on CPU compared to Qwen3.
* **Best performance** – LFM2 outperforms similarly-sized models across multiple benchmark categories, including knowledge, mathematics, instruction following, and multilingual capabilities.
* **New architecture** – LFM2 is a new hybrid Liquid model with multiplicative gates and short convolutions.
* **Flexible deployment** – LFM2 runs efficiently on CPU, GPU, and NPU hardware for flexible deployment on smartphones, laptops, or vehicles.

Find more information about LFM2 in our [blog post](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models).

## πŸ“„ Model details

Due to their small size, **we recommend fine-tuning LFM2 models on narrow use cases** to maximize performance. 
They are particularly suited for agentic tasks, data extraction, RAG, creative writing, and multi-turn conversations. 
However, we do not recommend using them for tasks that are knowledge-intensive or require programming skills.

| Property            | Value                         |
| ------------------- | ----------------------------- |
| **Parameters**      | 1,170,340,608                 |
| **Layers**          | 16 (10 conv + 6 attn)         |
| **Context length**  | 32,768 tokens                 |
| **Vocabulary size** | 65,536                        |
| **Precision**       | bfloat16                      |
| **Training budget** | 10 trillion tokens            |
| **License**         | LFM Open License v1.0         |

**Supported languages**: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish.

**Generation parameters**: We recommend the following parameters:
* `temperature=0.3`
* `min_p=0.15`
* `repetition_penalty=1.05`

**Chat template**: LFM2 uses a ChatML-like chat template as follows:

```
<|startoftext|><|im_start|>system
You are a helpful assistant trained by Liquid AI.<|im_end|>
<|im_start|>user
What is C. elegans?<|im_end|>
<|im_start|>assistant
It's a tiny nematode that lives in temperate soil environments.<|im_end|>
```

You can apply it using the dedicated [`.apply_chat_template()`](https://huggingface.co/docs/transformers/en/chat_templating#applychattemplate) function from Hugging Face transformers.

**Tool use**: It consists of four main steps:
1. **Function definition**: LFM2 takes JSON function definitions as input (JSON objects between `<|tool_list_start|>` and `<|tool_list_end|>` special tokens), usually in the system prompt
2. **Function call**: LFM2 writes Pythonic function calls (a Python list between `<|tool_call_start|>` and `<|tool_call_end|>` special tokens), as the assistant answer.
3. **Function execution**: The function call is executed and the result is returned (string between `<|tool_response_start|>` and `<|tool_response_end|>` special tokens), as a "tool" role.
4. **Final answer**: LFM2 interprets the outcome of the function call to address the original user prompt in plain text.

Here is a simple example of a conversation using tool use:

```
<|startoftext|><|im_start|>system
List of tools: <|tool_list_start|>[{"name": "get_candidate_status", "description": "Retrieves the current status of a candidate in the recruitment process", "parameters": {"type": "object", "properties": {"candidate_id": {"type": "string", "description": "Unique identifier for the candidate"}}, "required": ["candidate_id"]}}]<|tool_list_end|><|im_end|>
<|im_start|>user
What is the current status of candidate ID 12345?<|im_end|>
<|im_start|>assistant
<|tool_call_start|>[get_candidate_status(candidate_id="12345")]<|tool_call_end|>Checking the current status of candidate ID 12345.<|im_end|>
<|im_start|>tool
<|tool_response_start|>{"candidate_id": "12345", "status": "Interview Scheduled", "position": "Clinical Research Associate", "date": "2023-11-20"}<|tool_response_end|><|im_end|>
<|im_start|>assistant
The candidate with ID 12345 is currently in the "Interview Scheduled" stage for the position of Clinical Research Associate, with an interview date set for 2023-11-20.<|im_end|>
```

**Architecture**: Hybrid model with multiplicative gates and short convolutions: 10 double-gated short-range LIV convolution blocks and 6 grouped query attention (GQA) blocks.

**Pre-training mixture**: Approximately 75% English, 20% multilingual, and 5% code data sourced from the web and licensed materials.

**Training approach**:
* Knowledge distillation using [LFM1-7B](https://www.liquid.ai/blog/introducing-lfm-7b-setting-new-standards-for-efficient-language-models) as teacher model
* Very large-scale SFT on 50% downstream tasks, 50% general domains
* Custom DPO with length normalization and semi-online datasets
* Iterative model merging

## πŸƒ How to run LFM2

You can run LFM2 with transformers and llama.cpp. vLLM support is coming.

### 1. Transformers

To run LFM2, you need to install Hugging Face [`transformers`](https://github.com/huggingface/transformers) v4.55 or more recent as follows:

```python
pip install -U transformers
```

Here is an example of how to generate an answer with transformers in Python:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load model and tokenizer
model_id = "LiquidAI/LFM2-1.2B"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype="bfloat16",
#    attn_implementation="flash_attention_2" <- uncomment on compatible GPU
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Generate answer
prompt = "What is C. elegans?"
input_ids = tokenizer.apply_chat_template(
    [{"role": "user", "content": prompt}],
    add_generation_prompt=True,
    return_tensors="pt",
    tokenize=True,
).to(model.device)

output = model.generate(
    input_ids,
    do_sample=True,
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_new_tokens=512,
)

print(tokenizer.decode(output[0], skip_special_tokens=False))

# <|startoftext|><|im_start|>user
# What is C. elegans?<|im_end|>
# <|im_start|>assistant
# C. elegans, also known as Caenorhabditis elegans, is a small, free-living
# nematode worm (roundworm) that belongs to the phylum Nematoda.
```

You can directly run and test the model with this [Colab notebook](https://colab.research.google.com/drive/1_q3jQ6LtyiuPzFZv7Vw8xSfPU5FwkKZY?usp=sharing).

### 2. Llama.cpp

You can run LFM2 with llama.cpp using its [GGUF checkpoint](https://huggingface.co/LiquidAI/LFM2-1.2B-GGUF). Find more information in the model card.

## πŸ”§ How to fine-tune LFM2

We recommend fine-tuning LFM2 models on your use cases to maximize performance.

| Notebook | Description | Link |
|-------|------|------|
| SFT (Unsloth) | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter using Unsloth. | <a href="https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Liquid_LFM2_(1.2B)-Conversational.ipynb"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> |
| SFT (Axolotl) | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter using Axolotl. | <a href="https://colab.research.google.com/drive/155lr5-uYsOJmZfO6_QZPjbs8hA_v8S7t?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> |
| SFT (TRL) | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter using TRL. | <a href="https://colab.research.google.com/drive/1j5Hk_SyBb2soUsuhU0eIEA9GwLNRnElF?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> |
| DPO (TRL) | Preference alignment with Direct Preference Optimization (DPO) using TRL. | <a href="https://colab.research.google.com/drive/1MQdsPxFHeZweGsNx4RH7Ia8lG8PiGE1t?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="110" alt="Colab link"></a> |

## πŸ“ˆ Performance

LFM2 outperforms similar-sized models across different evaluation categories.

### 1. Automated benchmarks

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/3cB7VqMnrG9I8EqrL7k-q.png)

| Model | MMLU | GPQA | IFEval | IFBench | GSM8K | MGSM | MMMLU |
|-------|------|------|--------|---------|-------|------|-------|
| LFM2-350M | 43.43 | 27.46 | 65.12 | 16.41 | 30.1 | 29.52 | 37.99 |
| LFM2-700M | 49.9 | 28.48 | 72.23 | 20.56 | 46.4 | 45.36 | 43.28 |
| LFM2-1.2B | *55.23* | **31.47** | **74.89** | *20.7* | *58.3* | *55.04* | **46.73** |
| Qwen3-0.6B | 44.93 | 22.14 | 64.24 | 19.75 | 36.47 | 41.28 | 30.84 |
| Qwen3-1.7B | **59.11** | 27.72 | *73.98* | **21.27** | 51.4 | **66.56** | *46.51* |
| Llama-3.2-1B-Instruct | 46.6 | *28.84* | 52.39 | 16.86 | 35.71 | 29.12 | 38.15 |
| gemma-3-1b-it | 40.08 | 21.07 | 62.9 | 17.72 | **59.59** | 43.6 | 34.43 |

### 2. LLM-as-a-Judge

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/4Yxx0l9aQ6ATrps5GWHzv.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/lzpZOGwH-8bTlOWd3tv6M.png)

### 3. Inference

#### Throughput comparison on CPU in ExecuTorch

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/KoKcsXUOnkvz2dwZ99k08.png)

#### Throughput comparison on CPU in Llama.cpp

![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/c7UYZ5nh6qJMB4rd6WKde.png)

## πŸ“¬ Contact

If you are interested in custom solutions with edge deployment, please contact [our sales team](https://www.liquid.ai/contact).